- 265.17 KB
- 2021-06-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
函数
一、函数的定义:
1. 函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.
(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;
(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
2. 函数的三要素:定义域、值域、对应法则
3. 函数的表示方法:(1)解析法:明确函数的定义域
(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。
(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。
4、函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .
(2) 画法
A、描点法: B、图象变换法:平移变换;伸缩变换;对称变换,即平移。
(3)函数图像平移变换的特点:
1)加左减右——————只对x
2)上减下加——————只对y
3)函数y=f(x) 关于X轴对称得函数y=-f(x)
4)函数y=f(x) 关于Y轴对称得函数y=f(-x)
5)函数y=f(x) 关于原点对称得函数y=-f(-x)
6)函数y=f(x) 将x轴下面图像翻到x轴上面去,x轴上面图像不动得
函数y=| f(x)|
7)函数y=f(x) 先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)
二、函数的基本性质
1、函数解析式子的求法
(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)、求函数的解析式的主要方法有:
1)代入法:
2)待定系数法:
3)换元法:
4)拼凑法:
2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x
的值组成的集合.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
3、相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关)②定义域一致(两点必须同时备)
4、区间的概念:
(1)区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
(3)区间的数轴表示
5、值域 (先考虑其定义域)
(1)观察法:直接观察函数的图像或函数的解析式来求函数的值域;
(2)反表示法:针对分式的类型,把Y关于X的函数关系式化成X关于Y的函数关系式,由X的范围类似求Y的范围。
(3)配方法:针对二次函数的类型,根据二次函数图像的性质来确定函数的值域,注意定义域的范围。
(4)代换法(换元法):作变量代换,针对根式的题型,转化成二次函数的类型。
6.分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
(4)常用的分段函数有取整函数、符号函数、含绝对值的函数
7.映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”
对于映射f:A→B来说,则应满足:
(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;
(2)集合A中不同的元素,在集合B中对应的象可以是同一个;
(3)不要求集合B中的每一个元素在集合A中都有原象。
注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的。所以函数是映射,而映射不一定的函数
8、函数的单调性(局部性质)及最值
(1)、增减函数
(1)设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x11,且∈*.
当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数。此时,a的n次方根用符号 表示。
当n为偶数时,正数的n次方根有两个,这两个数互为相反数。此时正数a的正的n次方根用符号 表示,负的n的次方根用符号 表示。正的n次方根与负的n次方根可以合并成 (a>0)。
注意:负数没有偶次方根;0的任何次方根都是0,记作。
当是奇数时,,当是偶数时,
式子 叫做根式,这里n叫做根指数,a叫做被开方数。
3、 分数指数幂
正数的分数指数幂的
,
0的正分数指数幂等于0,0的负分数指数幂没有意义
4、 有理数指数米的运算性质
(1)· ;
(2) ;
(3) .
5、无理数指数幂
一般的,无理数指数幂aa(a>0,a是无理数)是一个确定的实数。有理数指数幂的运算性质同样使用于无理数指数幂。
(二)、指数函数的性质及其特点
1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?
2、指数函数的图象和性质
a>1
01时,若X11
0
相关文档
- 【数学】2018届一轮复习苏教版(理)高2021-06-3018页
- 2015届高考数学二轮专题训练:专题二2021-06-3014页
- 甘肃省武威第六中学2020届高三下学2021-06-308页
- 辽宁省葫芦岛市六校协作体2019-2022021-06-3013页
- 高中数学必修5公开课教案2_3_1 等2021-06-306页
- 数学卷·2018届广东省揭阳市惠来二2021-06-3018页
- 2015届高考数学二轮复习专题训练试2021-06-308页
- 高考卷 普通高等学校招生全国统一2021-06-3014页
- 数学理卷·2019届福建省闽侯第四中2021-06-309页
- 【数学】2018届一轮复习人教A版 2021-06-3015页