- 336.00 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
3.4 不等式的实际应用
1.能根据实际情景建立不等式模型.(难点)
2.掌握运用不等式知识,解决实际问题的方法、步骤.(重点)
[基础·初探]
教材整理 不等式的实际应用
阅读教材P81~P83,完成下列问题.
1.实际问题中,有许多不等式模型,必须首先领悟问题的实际背景,确定问题中量与量之间的关系,然后适当设未知数,将量与量间的关系变成不等式或不等式组.
2.实际问题中的每一个量都有其实际意义,必须充分注意定义域的变化.
3.解不等式应用题,一般可按以下四个步骤进行:
(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系;
(2)引进数学符号,用不等式表示不等关系;
(3)解不等式;
(4)回答实际问题.
1.有如图341所示的两种广告牌,其中图(1)是由两个等腰直角三角形构成的,图(2)是一个矩形,从图形上看,这两个广告牌面积的大小关系为________,并将这种大小关系用含字母a,b的不等式表示出来为________.
图341
【解析】 图(1)广告牌面积大于图(2)广告牌面积.
设图(1)面积为S1,则S1=+,图(2)面积为S2,则S2=ab,∴a2+b2>ab.
【答案】 图(1)广告牌面积大于图(2)广告牌面积
8
a2+b2>ab
2.一辆汽车原来每天行驶x km,如果这辆汽车每天行驶的路程比原来多19 km,那么在8天内它的行程超过2 200 km,写成不等式为________;如果它每天行驶的路程比原来少12km,那么它原来行驶8天的路程就得花9天多的时间,用不等式表示为________.
【解析】 原来每天行驶x km,
现在每天行驶(x+19) km.
则不等关系“在8天内的行程超过2 200 km”,
写成不等式为8(x+19)>2 200.
若每天行驶(x-12) km,
则不等关系“原来行驶8天的路程就得花9天多的时间”用不等式表示为>9.
【答案】 8(x+19)>2 200 >9
[小组合作型]
比较法在实际问题中的应用
(1)某品牌彩电为了打开市场,促进销售,准备对其特定型号彩电降价,有四种降价方案:
方案(1)先降价a%,再降价b%;
方案(2)先降价b%,再降价a%;
方案(3)先降价%,再降价%;
方案(4)一次性降价(a+b)%.
其中a>0,b>0,a≠b,上述四种方案中,降价幅度最小的是( )
A.方案(1) B.方案(2)
C.方案(3) D.方案(4)
(2)甲、乙两家饭馆的老板同去超市购买两次大米,这两次大米的价格不同,两家饭馆老板购买的方式也不同,其中甲每次购进100 kg大米,而乙每次用去100元钱.购买方式更合算的是________老板.
【精彩点拨】 首先用代数式表示出要比较的两个量,然后用比差法比较这两个量的大小.
8
【自主解答】 设原价为1,则四种方案中,降价后的价格分别为:
(1)(1-a%)(1-b%);(2)(1-b%)(1-a%);
(3)2;(4)1-(a+b)%.
由于(1-a%)(1-b%)=(1-b%)·(1-a%)≤2=2,
且(1-a%)(1-b%)>1-(a+b)%,
所以方案(3)降价后价格最高.
(2)设两次大米的价格分别为a元/千克,b元/千克(a、b>0,a≠b),则甲两次购买大米的平均价格是=元/千克;
乙两次购买大米的平均价格是==元/千克.
∵-==>0,
∴>.
∴乙饭馆的老板购买大米的方式更合算.
【答案】 (1)C (2)乙
比较法在实际中的应用主要体现在决策优化问题中,解决的关键是两个量表示后用作差法或作商法进行大小比较,然后作出实际问题的解答.
[再练一题]
1.如图342(2),一圆柱的底面半径为5 dm,高为5 dm,BC是底面直径,求一只蚂蚁从A点出发沿圆柱表面爬行到点C的最短路线.小明设计了两条路线:试说明哪条路线最短?
路线1:侧面展开图中的线段AC.如图(1)所示:
路线2:高线AB+底面直径BC.如图(2)所示:
(1) (2)
图342
【解】 设路线1的长度为l1,
则l=AC2=AB2+BC2=52+(5π)2=25+25π2.
设路线2的长度为l2,
则l=(AB+BC)2=(5+10)2=225.
8
∵l-l=25+25π2-225=25π2-200=25(π2-8)>0,∴l>l,∴l1>l2.所以选择路线2较短.
一元二次不等式的实际应用
某农贸公司按每担200元收购某农产品,并按每100元纳税10元(又称征税率为10个百分点),计划可收购 a万担,政府为了鼓励收购公司多收购这种农产品,决定将征税率降低x(x≠0)个百分点,预测收购量可增加2x个百分点.
(1)写出税收y(万元)与x的函数关系式;
(2)要使此项税收在税率调节后,不少于原计划税收的83.2%,试确定x的取值范围.
【精彩点拨】 认真阅读题意,理解各个量之间的关系,构建函数关系或不等式解决问题.
【自主解答】 (1)降低税率后为(10-x)%,农产品的收购量为a(1+2x%)万担,收购总金额为200a(1+2x%).
依题意:y=200a(1+2x%)(10-x)%
=a(100+2x)(10-x)(0<x<10).
(2)原计划税收为200a·10%=20a(万元).
依题意得:a(100+2x)(10-x)≥20a×83.2%,
化简得,x2+40x-84≤0,∴-42≤x≤2.
又∵0<x<10,∴0<x≤2.∴x的取值范围是(0,2].
不等式应用题常以函数、数列为背景出现,多是解决现实生活、生产中的最优化问题,在解题中主要涉及到不等式的解法等问题,构造数学模型是解不等式应用题的关键.
[再练一题]
2.某市新建一处公园,要对园内一块长为800 m,宽为600 m的长方形地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.
【导学号:18082048】
【解】 设花卉带的宽度为x m,则中间草坪的长为(800-2x) m,宽为(600-2x) m.根据题意可得(800-2x)(600-2x)≥×800×600,整理得x2-700x+600×100≥0,即(x-600)(x-100)≥0,所以0100,
∴x1-x2<0,x1x2-100>0,
∴<0,f(x1)-f(x2)<0,
∴函数f(x)=x+在[35,+∞)上是增函数,
∴当x≥35时,f(x)min=f(35).
所以,当x=35时,Y2有最小值,此时Y2的最小值小于10 989.故该厂应接受此优惠条件.
求实际问题中最值的一般思路:
(1)先读懂题意,设出变量,理清思路,列出函数关系式.
(2)把实际问题抽象成函数的最大值或最小值问题.
(3)在定义域内,求函数的最大值或最小值时,一般先考虑均值不等式,当均值不等式求最值的条件不具备时,再考虑函数的单调性.
(4)正确写出答案.
8
[再练一题]
3.某单位用2 160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2 000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).
(1)写出楼房平均综合费用y关于建造层数x的函数关系式;
(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)
【解】 (1)依题意得
y=(560+48x)+
=560+48x+(x≥10,x∈N+).
(2)∵x>0,
∴48x+≥2
=1 440,
当且仅当48x=,即x=15时取到“=”,此时,平均综合费用的最小值为560+1 440=2 000(元). 答:当该楼房建造15层时,可使楼房每平方米的平均综合费用最少,最少值为2 000元.
1.若集合A={x|-1≤2x+1≤3},B=,则A∩B=( )
A.{x|-1≤x<0} B.{x|0600,
即x2-50x+600<0,
解得20
相关文档
- 2020年高中数学新教材同步必修第一2021-07-0134页
- 高中数学 第三章 章末综合训练 新2021-07-013页
- 2020高中数学 章末综合测评1 计数2021-07-016页
- 高中数学常见题型解法归纳及反馈检2021-07-014页
- 贵州省贵阳市普通高中2020届高三上2021-07-0123页
- 高中数学二轮专题复习学案-专题 分2021-07-0113页
- 2019-2020学年高中数学第一章坐标2021-07-0145页
- 高中数学必修2教案:圆与圆的位置关2021-07-012页
- 高中数学必修3教案:1_1_2程序框图(教2021-07-0111页
- 高中数学公式大全(理数)2021-07-0128页