• 750.50 KB
  • 2021-07-01 发布

2021版高考数学一轮复习第八章立体几何初步8-7-1利用空间向量求线线角与线面角练习新人教B版

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎8.7.1 利用空间向量求线线角与线面角 核心考点·精准研析 考点一 异面直线所成的角 ‎ ‎1.在直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为 (  )‎ A. B. C. D.‎ ‎2.在直三棱柱ABC-A1B1C1中,AA1=AB=AC,AB⊥AC,M是CC1的中点,Q是BC的中点,点P在A1B1上,则直线PQ与直线AM所成的角为________. ‎ ‎3.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E是棱CC1的中点,=λ,若异面直线D1E和A1F所成角的余弦值为,则λ的值为________.  ‎ ‎【解析】1.选C.建立如图所示空间直角坐标系.‎ 设BC=CA=CC1=2,则可得A(2,0,0),B(0,2,0),M(1,1,2),N(1,0,2),所以=(1,-1,2),=(-1,0,2).‎ 所以cos<,>==‎ ‎==.‎ 6‎ ‎2.建立如图所示的空间直角坐标系,设AA1=2,‎ 则A(0,0,0),M(0,2,1),‎ P(t,0,2)(0≤t≤2),Q(1,1,0),故=(0,2,1),=(1-t,1,-2),而·=0,故⊥.‎ 所以PQ与AM所成的角为.‎ 答案:‎ ‎3.以D为原点,以DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,正方体的棱长为2,则 A1,D1,E,A ,‎ 所以=,=+=+λ=+λ=,所以 cos<,>===,解得λ=(λ=-舍去).‎ 答案:‎ ‎ 求异面直线所成的角的两个关注点 ‎(1)用向量方法求两条异面直线所成的角,‎ 是通过两条直线的方向向量的夹角来求解的.‎ ‎(2)由于两异面直线所成角的范围是θ∈0,,两方向向量的夹角α的范围是(0,π),所以要注意二者的区别与联系,应有cos θ=|cos α|.‎ 6‎ 考点二 直线与平面所成的角 ‎ ‎【典例】(2018·全国卷Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF. ‎ ‎(1)证明:平面PEF⊥平面ABFD.‎ ‎(2)求DP与平面ABFD所成角的正弦值.‎ ‎【解题导思】‎ 序号 联想解题 ‎(1)要证面面垂直,先想到判定定理 ‎(2)要求线面角,考虑用向量法,想到如何建立空间坐标系.‎ ‎【解析】(1)由已知可得,BF⊥PF,BF⊥EF,PF∩EF=F,所以BF⊥平面PEF.‎ 又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.‎ ‎(2)方法一:作PH⊥EF,垂足为H.‎ 由(1)得,PH⊥平面ABFD.‎ 以H为坐标原点,的方向为y轴正方向,设正方形ABCD的边长为2,建立如图所示的空间直角坐标系H-xyz.‎ 由(1)可得,DE⊥PE.‎ 又DP=2,DE=1,所以PE=.‎ 又PF=1,EF=2,故PE⊥PF.‎ 可得PH=,EH=.‎ 则H(0,0,0),P,D,‎ 6‎ ‎=,=为平面ABFD的一个法向量.‎ 设DP与平面ABFD所成角为θ,‎ 则sin θ===.‎ 所以DP与平面ABFD所成角的正弦值为.‎ 方法二:因为PF⊥BF,BF∥ED,所以PF⊥ED,‎ 又PF⊥PD,ED∩DP=D,所以PF⊥平面PED,‎ 所以PF⊥PE,‎ 设AB=4,则EF=4,PF=2,所以PE=2,‎ 过P作PH⊥EF交EF于H点,‎ 由平面PEF⊥平面ABFD,‎ 所以PH⊥平面ABFD,连接DH,‎ 则∠PDH即为直线DP与平面ABFD所成的角,‎ 由PE·PF=EF·PH,所以PH==,‎ 因为PD=4,所以sin∠PDH==,‎ 所以DP与平面ABFD所成角的正弦值为.‎ ‎ 利用向量法求线面角的方法 ‎(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);‎ ‎(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.‎ 6‎ 如图,四棱柱ABCD-A1B1C1D1的底面为菱形,∠BAD=120°,AB=2,E,F分别为CD,AA1的中点.‎ ‎(1)求证:DF∥平面B1AE.‎ ‎(2)若AA1⊥底面ABCD,且直线AD1与平面B1AE所成线面角的正弦值为,求AA1的长.‎ ‎【解析】(1)设G为AB1的中点,连接EG,GF,‎ 因为FG