- 36.00 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
等差数列及其前n项和备考策略
主标题:等差数列及其前n项和备考策略
副标题:通过考点分析高考命题方向,把握高考规律,为学生备考复习打通快速通道。
关键词:等差数列,等差数列前n项和,等差数列的判断,备考策略
难度:3
重要程度:5
内容
考点一 等差数列的基本量的求解
【例1】 在等差数列{an}中,a1=1,a3=-3.
(1)求数列{an}的通项公式;
(2)若数列{an}的前k项和Sk=-35,求k的值.
解 (1)设等差数列{an}的公差为d,则an=a1+(n-1)d.
由a1=1,a3=-3,可得1+2d=-3.
解得d=-2.从而,an=1+(n-1)×(-2)=3-2n.
(2)由(1)可知an=3-2n.
所以Sn==2n-n2.
进而由Sk=-35可得2k-k2=-35.
即k2-2k-35=0,解得k=7或-5.
又k∈N*,故k=7为所求.
【备考策略】(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.
(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.
考点二 等差数列的判定与证明
【例2】若数列{an}的前n项和为Sn,且满足an+2SnSn-1=0(n≥2),a1=.
(1)求证:成等差数列;
(2)求数列{an}的通项公式.
点拨 (1)利用an=Sn-Sn-1(n≥2)转化为关于Sn与Sn-1的式子⇒同除Sn·Sn-1⇒利用定义证明⇒得出结论.
(2)由(1)求⇒再求Sn⇒再代入条件an=-2SnSn-1,求an⇒验证n=1的情况⇒得出结论.
(1)证明 当n≥2时,由an+2SnSn-1=0,
得Sn-Sn-1=-2SnSn-1,所以-=2,
又==2,故是首项为2,公差为2的等差数列.
(2)解 由(1)可得=2n,∴Sn=.
当n≥2时,
an=Sn-Sn-1=-==-.
当n=1时,a1=不适合上式.
故an=
【备考策略】 证明一个数列是否为等差数列的基本方法有两种:一是定义法,证明an-an-1=d(n≥2,d为常数);二是等差中项法,证明2an+1=an+an+2.若证明一个数列不是等差数列,则只需举出反例即可,也可以用反证法.
考点三 等差数列的性质及应用
【例3】 (1)设Sn为等差数列{an}的前n项和,S8=4a3,a7=-2,则a9=( ).
A.-6 B.-4 C.-2 D.2
(2)在等差数列{an}中,前m项的和为30,前2m项的和为100,则前3m项的和为________.
解析 (1)S8=4a3⇒=4a3⇒a3+a6=a3,∴a6=0,∴d=-2,∴a9=a7+2d=-2-4=-6.
(2)记数列{an}的前n项和为Sn,由等差数列前n项和的性质知Sm,S2m-Sm,S3m-S2m成等差数列,则2(S2m-Sm)=Sm+(S3m-S2m),又Sm=30,S2m=100,S2m-Sm=100-30=70,所以S3m-S2m=2(S2m-Sm)-Sm=110,所以S3m=110+100=210.
答案 (1)A (2)210
【备考策略】巧妙运用等差数列的性质,可化繁为简;若奇数个数成等差数列且和为定值时,可设中间三项为a-d,a,a+d;若偶数个数成等差数列且和为定值时,可设中间两项为a -d,a+d,其余各项再依据等差数列的定义进行对称设元.
考点四 等差数列的性质及最值
【例4】已知数列{an}是等差数列,a1+a3+a5=105,a2+a4+a6=99,{an}的前n项和为Sn,则使得Sn达到最大的n是( )
A.18 B.19
C.20 D.21
[解析] a1+a3+a5=105⇒a3=35,a2+a4+a6=99⇒a4=33,则{an}的公差d=33-35=-2,a1=a3-2d=39,Sn=-n2+40n,因此当Sn取得最大值时,n=20.
【备考策略】求等差数列前n项和Sn最值的两种方法
(1)函数法:利用等差数列前n项和的函数表达式Sn=an2+bn,通过配方或借助图像求二次函数最值的方法求解.
(2)邻项变号法:
①a1>0,d<0时,满足的项数m使得Sn取得最大值为Sm;
②当a1<0,d>0时,满足的项数m使得Sn取得最小值为Sm.
相关文档
- 高考数学专题复习教案: 用样本估计2021-07-014页
- 高考数学专题复习教案:选修4-4 坐标2021-07-0123页
- 高考数学专题复习教案: 条件概率与2021-07-013页
- 高考数学专题复习教案: 离散型随机2021-07-012页
- 高考数学专题复习教案:第五章 平面2021-07-0139页
- 高考数学专题复习教案: 直线与圆锥2021-07-012页
- 高考数学专题复习教案: 随机事件的2021-07-013页
- 高考数学专题复习教案: 椭圆的离心2021-07-011页
- 高考数学专题复习教案: 椭圆的焦点2021-07-011页
- 高考数学专题复习教案: 离散型随机2021-07-012页