• 38.00 KB
  • 2021-07-01 发布

高考数学专题复习教案: 随机事件的概率

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
随机事件的概率 主标题:随机事件的概率 副标题:为学生详细的分析随机事件的概率的高考考点、命题方向以及规律总结。‎ 关键词:随机事件,互斥事件,对立事件 难度:2‎ 重要程度:4‎ 考点剖析:‎ ‎1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.‎ ‎2.了解两个互斥事件的概率加法公式.‎ 命题方向:‎ ‎1.随机事件的频率与概率有着一定的联系,在统计学中,可通过计算事件发生的频率去估算事件的概率,因此,它们也成为近几年高考的命题热点.多以解答题的形式出现,有时也会以选择、填空题的形式出现.多为容易题或中档题.‎ ‎2.高考对该部分内容的考查主要有以下几个命题角度:‎ ‎(1)列出频率分布表;‎ ‎(2)由频率估计概率;‎ ‎(3)由频率计算某部分的数量.‎ 规律总结:‎ 4种方法——基本事件个数的确定方法 ‎(1)列举法:(见本节考点一[方法规律]);‎ ‎(2)列表法:(见本节考点一[方法规律]);‎ ‎(3)树状图法:树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件个数的探求;‎ ‎(4)计数原理法:如果基本事件的个数较多,列举有一定困难时,可借助于两个计数原理及排列组合知识直接计算出m,n,再运用公式求概率.‎ 2个技巧——求解古典概型问题概率的技巧 ‎(1)较为简单问题可直接使用古典概型的概率公式计算;‎ ‎(2)较为复杂的概率问题的处理方法:一是转化为几个互斥事件的和,利用互斥事件的加法公式进行求解;二是采用间接法,先求事件A的对立事件的概率,再由P(A)=1-P()求事件A的概率.‎ 1个构建——构建不同的概率模型解决问题 ‎(1)原则:建立概率模型的一般原则是“结果越少越好”‎ ‎,这就要求选择恰当的观察角度,把问题转化为易解决的古典概型问题;‎ ‎(2)作用:一方面,对于同一个实际问题,我们有时可以通过建立不同“模型”来解决,即“一题多解”,在这“多解”的方法中,再寻求较为“简捷”的解法;另一方面,我们又可以用同一种“模型”去解决很多“不同”的问题,即“多题一解”.‎ 知 识 梳 理 ‎1.频率与概率 ‎(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.‎ ‎(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率.‎ ‎2.事件的关系与运算 定义 符号表示 包含关系 如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)‎ B⊇A(或A⊆B)‎ 相等关系 若B⊇A且A⊇B A=B 并事件(和事件)‎ 若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)‎ A∪B(或A+B)‎ 交事件(积事件)‎ 若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)‎ A∩B(或AB)‎ 互斥事件 若A∩B为不可能事件,则称事件A与事件B互斥 A∩B=∅‎ 对立事件 若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件 A∩B=∅‎ P(A∪B)=‎ P(A)+P(B)=1‎ ‎3.概率的几个基本性质 ‎(1)概率的取值范围:0≤P(A)≤1.‎ ‎(2)必然事件的概率P(E)=1.‎ ‎(3)不可能事件的概率P(F)=0.‎ ‎(4)互斥事件概率的加法公式 ‎①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).‎ ‎②若事件B与事件A互为对立事件,则P(A)=1-P(B).‎