- 305.00 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
【2019最新】精选高二数学4月月考试题理3
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知复数z=,则·i在复平面内对应的点位于( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
2.用反证法证明命题“,如果可被5整除,那么,至少有1个能被5整除.”则假设的内容是( )
A.,都能被5整除 B.,都不能被5整除
C.不能被5整除 D.,有1个不能被5整除
3.在数学归纳法证明“”时,验证当时,等式的左边为( )
A. B. C. D.
4.过曲线y=+1上一点,且与曲线在该点处的切线垂直的直线方程是( )
A. B C D
5.下列推理合理的是( )
A.是增函数,则
B.因为,则
13 / 13
C.为锐角三角形,则
D.直线,则
6.在二项式的展开式中,含x4的项的系数是( )
A.10 B.-10 C.-5 D.20
7.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(-2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(-2)
D.函数f(x)有极大值f(-2)和极小值f(2)
8.某局安排3名副局长带5名职工去3地调研,每地至少去1名副局长和1名职工,则不同的安排方法总数为( )
A.1 800 B.900 C.300 D.1 440
9.设函数f(x)=xm+ax的导函数f′(x)=2x+1,则的值等于( )
A. B. C. D.
10、已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,P为双曲线右支上的任意一点,若的最小值为8a,则双曲线离心率的取值范围是( )
A.(1,+∞) B.(1,2] C.(1,] D.(1,3]
11、已知a>0,且a≠1,f(x)=x2-ax.当x∈(-1,1)时,均有f(x)<,则a的取值范围是( )
13 / 13
A.∪[2,+∞) B.∪(1,2]
C.∪[4,+∞) D.∪(1,4]
12.若函数f(x)=x-sin2x+asinx在(-∞,+∞)单调递增,则a的取值范围是( )
A.[-1,1] B.[-1,] C.[-,] D.[-1,-]
二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)
13.若(3x-1)7=a7x7+a6x6+…+a1x+a0,则a7+a6+…+a1的值为________.
14.如图阴影部分是由曲线y=、y2=x与直线x=2、y=0围成,则其面积为________.
15.已知:中,于,三边分别是,则有;类比上述结论,写出下列条件下的结论:四面体中,,的面积分别是,二面角的度数分别是,则 .
16、已知函数f(x)=(x2+2x-2)·ex,x∈R,e为自然对数的底数。若方程f(x)=m有两个不同的实数根,则实数m的取值范围为________.
三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)
17.用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数?
13 / 13
(1)比21 034大的偶数; (2)左起第二、四位是奇数的偶数.
18、在△ABC中,内角A,B,C的对边分别为a,b,c,且(2b-c)cos A=acos C.
(1)求角A的大小;(2)若a=3,b=2c,求△ABC的面积.
19.在数列中,,且().
(1)写出此数列的前5项; (2)归纳猜想的通项公式,并加以证明.
20、如图,在四棱柱ABCDA1B1C1D1中,底面ABCD是等腰梯形,AB∥CD,AB=2,BC=CD=1,顶点D1在底面ABCD内的射影恰为点C.
(1)求证:AD1⊥BC;
(2)若直线DD1与直线AB所成的角为,求平面ABC1D1与平面ABCD所成角(锐角)的余弦值.
21、已知A,B,C是椭圆M:+=1(a>b>0)上的三点,其中点A的坐标为(2,0),BC过椭圆的中心,且·=0,||=2||.
(1)求椭圆M的方程;
(2)过点(0,t)的直线l(斜率存在时)与椭圆M交于两点P,Q,设D为椭圆M与y轴负半轴的交点,且||=||,求实数t的取值范围.
22.设函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求a,b, c,d的值; (2)若x≥-2时,f(x)≤kg(x),求k的取值范围.
13 / 13
高二理科数学月考试题
姓名
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知复数z=,则·i在复平面内对应的点位于( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
【解析】 ∵z==,∴=+i,∴·i=-+i.
【答案】 B
2.用反证法证明命题“,如果可被5整除,那么,至少有1个能被5整除.”则假设的内容是( )
A.,都能被5整除 B.,都不能被5整除
C.不能被5整除 D.,有1个不能被5整除
答案:B
3.在数学归纳法证明“”时,验证当时,等式的左边为( )
A. B. C. D.
答案:C
4.过曲线y=+1上一点,且与曲线在该点处的切线垂直的直线方程是( )
A. B C D
答案:C∵∴该点处的切线斜率为3,∴所求直线方程为y=-(x+1)即C答案
13 / 13
5.下列推理合理的是( )
A.是增函数,则
B.因为,则
C.为锐角三角形,则
D.直线,则
答案:C
6.在二项式5的展开式中,含x4的项的系数是( )
A.10 B.-10 C.-5 D.20
[解析] (1)由二项式定理可知,展开式的通项为C·(-1)rx10-3r,令10-3r=4,得r=2,所以含x4项的系数为C(-1)2=10,故选A.
7.某局安排3名副局长带5名职工去3地调研,每地至少去1名副局长和1名职工,则不同的安排方法总数为( )
A.1 800 B.900
C.300 D.1 440
解析:选B 分三步:第一步,将5名职工分成3组,每组至少1人,则有种不同的分组方法;第二步,将这3组职工分到3地有A种不同的方法;第三步,将3名副局长分到3地有A种不同的方法.根据分步乘法计数原理,不同的安排方案共有·AA=900(种),故选B.
8.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(-2)和极小值f(1)
13 / 13
C.函数f(x)有极大值f(2)和极小值f(-2)
D.函数f(x)有极大值f(-2)和极小值f(2)
[解析] 由图可知,当x<-2时,f′(x)>0;当-2<x<1时,f′(x)<0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.[答案] D
9.设函数f(x)=xm+ax的导函数f′(x)=2x+1,则f(-x)dx的值等于( )
A. B. C. D.
解析:选A 由于f(x)=xm+ax的导函数f′(x)=2x+1,所以f(x)=x2+x,于是
f(-x)dx=(x2-x)dx==.
10、已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,P为双曲线右支上的任意一点,若的最小值为8a,则双曲线离心率的取值范围是( )
A.(1,+∞) B.(1,2] C.(1,] D.(1,3]
解析:因为P为双曲线右支上的任意一点,所以|PF1|=2a+|PF2|,所以=|PF2|++4a≥2+4a=8a,当且仅当|PF2|=2a,|PF1|=4a时,等号成立,可得2a+4a≥2c,解得e≤3,又因为双曲线离心率大于1,故选D.
11、已知a>0,且a≠1,f(x)=x2-ax.当x∈(-1,1)时,均有f(x)<,则实数a的取值范围是( )
A.∪[2,+∞) B.∪(1,2] C.∪[4,+∞) D.∪(1,4]
13 / 13
解析:选B 当x∈(-1,1)时,均有f(x)<,即ax>x2-在(-1,1)上恒成立,令g(x)=ax,m(x)=x2-,由图象知:当01时,g(-1)≥m(1),即a-1≥1-=,此时10; 此时f(x) 单调递增-40时,f′(x)>0; 此时f(x) 单调递增,故当x→-∞,f(x)→0,x→+∞,f(x)→+∞大致图象为如图,“方程f(x)=m有两个不同的实数根”转化为函数f(x)的图象与y=m的图象有两个不同的交点,故实数m的取值范围为(-2,0]∪{6e-4}。
三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)
17.用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数?
(1)比21 034大的偶数; (2)左起第二、四位是奇数的偶数.
解:(1)可分五类,当末位数字是0,而首位数字是2时,有6个五位数;
当末位数字是0,而首位数字是3或4时,有CA=12个五位数;
当末位数字是2,而首位数字是3或4时,有CA=12个五位数;
当末位数字是4,而首位数字是2时,有3个五位数;
当末位数字是4,而首位数字是3时,有A=6个五位数;
故共有6+12+12+3+6=39个满足条件的五位数.
13 / 13
(2)可分为两类:末位数是0,个数有A·A=4;末位数是2或4,个数有A·C=4;
故共有A·A+A·C=8个满足条件的五位数.
18、在△ABC中,内角A,B,C的对边分别为a,b,c,且(2b-c)cos A=acos C.
(1)求角A的大小;(2)若a=3,b=2c,求△ABC的面积.
[解] (1)根据正弦定理,由(2b-c)cos A=acos C,
得2sin Bcos A=sin Acos C+sin Ccos A,即2sin Bcos A=sin(A+C),
所以2sin Bcos A=sin B,
因为0b>0)上的三点,其中点A的坐标为(2,0),BC过椭圆的中心,且·=0,||=2||.
(1)求椭圆M的方程;
(2)过点(0,t)的直线l(斜率存在时)与椭圆M交于两点P,Q,设D为椭圆M与y轴负半轴的交点,且||=||,求实数t的取值范围.
[解] (1)因为||=2||且BC过(0,0),则|OC|=|AC|.
因为·=0,所以∠OCA=90°,即C(,).
又因为a=2,设椭圆的方程为+=1,将C点坐标代入得+=1,
解得c2=8,b2=4.所以椭圆的方程为+=1.
(2)由条件D(0,-2),当k=0时,显然-20可得t2<4+12k2,① 设P(x1,y1),Q(x2,y2),PQ中点H(x0,y0),
则x0==,y0=kx0+t=,所以H,
由||=||,所以DH⊥PQ,即kDH=-,所以=-,
化简得t=1+3k2,②所以t>1,将②代入①得,1
相关文档
- 高中数学_1_3_1单调性与最大(小)值2021-07-015页
- 河南省南阳市内乡县高中2019-20202021-07-014页
- 高中数学选修2-3课件3_1 回归分析(2021-07-0120页
- 高中数学必修1备课资料(1_2 用二分2021-07-011页
- 高中数学选修2-3教学课件:离散型随2021-07-0120页
- 高中数学必修4同步练习:第一章 三角2021-07-019页
- 安徽省省级示范高中2019-2020学年2021-07-019页
- 高中数学人教a版必修五章末综合测2021-07-0110页
- 高中数学选修2-3教学课件:2007_6_52021-07-0111页
- 高中数学(人教版必修2)配套练习 第二2021-07-014页