• 233.83 KB
  • 2021-10-22 发布

2014年秋七年级(人教版)数学导学案:1_5有理数的乘方1

  • 2页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
1 1.5 有理数的乘方 第 16 学时 班级 小组 姓名 小组评价_________教师评价_______ 使用说明及方法指导: 学生先自学课本,经历自主探索总结的过程,并独立完成自主学习部分,然后小组讨 论交流,预习时间 20 分钟 学习目标 1、理解乘方的意义,探究有理数乘方的符号法则,会进行乘方的运算 2、通过合作交流及独立思考,培养学生正确迅速的运算及探究新知识的能力。 重点:乘方的意义及运算 难点:乘方的运算 一、自主学习: 1、复习巩固: ①乘法运算的符号法则及运算方法: ②多个不为 0 的数相乘,积的符号怎样确定? 2、导学: (1)一般地,几个相同因数 a 相乘,即 . .......a a a ,记作 ,读作 求 n 个相同因数的 ,叫作乘方,乘方的结果叫做 。 在 na 中, a 叫 做 , n 叫作 。当 看作 的 次方的结果时,也可读作 。 特别地一个数也可以看作这数本身的一次方,如 5 就是 5 的一次,即 155 ,指数为 1 通常 不写。 (2)警示: ①乘方是一种运算(乘法运算的特例),即求 个相同因数连乘的简便形式; ②幂是乘方的结果,它不能单独存在,即没有乘方就无所谓幂; ③乘方具有双重含义:既表示一种 ,又表示乘方运算的结果; ④书写格式:若底数是负数、分数或含运算关系的式子时,必须要用 把底数括起 来,以体现底数的整体性。 (3)拓展:底数为 1 ,0,1,10,0.1 的幂的特性: ( 1)n 0n  (n 为正整数) 1n  (n 为整数) 10 100 0n   (1 后面有____个 0), 0.1n =0.00…01 (1 前面有______个 0) (4)乘方的符号法则: 负数的奇次幂是 数,负数的偶次幂是 数。 正数的任何次幂都是 数,0 的任何正整数次幂都是 。 (5)参照乘法运算的方法进行乘方运算。 (6)用计算器作乘方运算。 二、合作探究: n 为奇数 n 为偶数 2 1、计算: 2010( 1) 5( 2) 38 3( 5) 41()2 4( 10) 3( 2) 223 × 2、 2( 3) ; 23 ______ 3、已知 n 是正整数,那么 2( 1) n , 21( 1) n 4、如果一个有理数的偶次幂是非负数,那么这个有理数是 。 A、正数 B、负数 C、0 D、任何有理数 5、平方等于 9 的数是 ,立方等于 27 的数是 ,平方等于本身的数 是 ,立方等于本身的数是 三、学以致用: 1、把 3 3 3()4 4 4 × × 写成乘方形式 。 2、计算: 2 32 , 22()3 , 22()3 3、下列运算正确的是 。 A、 229()32 B、 33 27()22   C、 239()24   D、 33 27()28   4、若 2 4 9x  ,则 x  若 3 27x  ,则 x  四、能力提升: 1、计算: 2 3 4 5 6 7 8 9 102 2 2 2 2 2 2 2 2 2         2、 232 ______ , 3、观察下列数,根据规律写出横线上的数 1 2 ; 3 4 ; 5 8 ; 7 16 ;______;第 2010 个数是____________。