- 207.00 KB
- 2021-10-26 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
4.3 平行线的性质
1.理解平行线的性质;(重点)[来源:学科网]
2.能运用平行线的性质进行推理证明.(重点、难点)
一、情境导入
窗户内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?
二、合作探究[来源:学.科.网Z.X.X.K]
探究点一:平行线的性质
【类型一】 直接利用平行线的性质求角度
已知:如图,AB∥CD,BE∥DF,∠B=65°,求∠D的度数.
解析:利用“两直线平行,内错角相等,同旁内角互补”的性质可求出结论.
解:∵AB∥CD,∴∠BED=∠B=65°.∵BE∥FD,∴∠BED+∠D=180°,∴∠D=180°-∠BED=180°-65°=115°.[来源:学*科*网]
方法总结:已知平行线求角度,应根据平行线的性质得出同位角相等,内错角相等,同旁内角互补,再结合已知条件进行转化.
【类型二】 角平分线与平行线综合求角度
如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,求∠ABD的度数.
解析:先利用GF∥CE,易求∠CAG,而∠PAG=12°,易求∠PAC.AP是∠BAC的角平分线,可求∠BAP,从而可求∠BAG=36°+12°+12°=60°,根据平行线的性质,即可求∠ABD.[来源:Z|xx|k.Com]
解:∵FG∥EC,∴∠ACE=∠CAG=36°.∵∠PAC=∠CAG+∠PAG,∴∠PAC=36°+12°=48°.∵AP平分∠BAC,∴∠PAC=∠BAP=48°.∵DB∥FG,∴∠ABD=∠BAG=
∠BAP+∠PAG=48°+12°=60°.[来源:Zxxk.Com]
方法总结:(1)利用平行线的性质可以得出角之间的相等关系或互补关系,利用角平分线的定义,可以得出角之间的倍分关系;(2)求角的度数,可把一个角转化为一个与它相等的角或转化为已知角的和差.
探究点二:平行线性质的应用
【类型一】 利用平行线的性质解决长方形的折叠问题
把一张长方形纸片ABCD沿EF折叠后,ED与BC的交点为G,D、C分别在D′、C′的位置上,如图所示,若∠EFG=55°,求∠1与∠2的度数.
解析:由∠1+∠3+∠4=180°和∠3=∠4=∠EFG=55°,可求∠1.由AD∥BC,得∠1+∠2=180°,可求∠2.
解:由题意可得∠3=∠4.因为∠EFG=55°,AD∥BC,所以∠3=∠4=∠EFG=55°,所以∠1=180°-∠3-∠4=180°-55°×2=70°.又因为AD∥BC,所以∠1+∠2=180°,所以∠2=180°-∠1=180°-70°=110°.
方法总结:本题考查图形折叠的性质与平行线性质的应用.由图形的折叠能够得到对应图形的对应角相等,对应线段也相等.根据平行线的性质,可以得到角之间的关系.
【类型二】 平行线的性质的实际应用问题
一大门的栏杆如图所示,∠BAE=90°,CD平行于地面AE,则∠ABC+∠BCD=________°.
解析:过B作BF∥AE,则CD∥BF∥AE,∴∠BCD+∠1=180°.又∵∠BAE=90°,BF∥AE,∴∠BAE+∠ABF=180°,∴∠ABF=90°.∴∠ABC+∠BCD=90°+180°=270°.故答案为270.
方法总结:解本题时既可以过点B作BF∥AE,也可以过点C作CM∥AB,方法不唯一.
三、板书设计
平行线的性质
平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生严谨的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学
相关文档
- 2019七年级数学下册 第7章 平面图2021-10-263页
- 七年级下册数学教案5-3-1 第1课时 2021-10-265页
- 七年级下册数学教案5-3-1 第2课时 2021-10-2610页
- 2019七年级数学下册 第7章 平面图2021-10-263页
- 初中数学7年级教案:第7讲 平行线的2021-10-269页
- 七年级下册数学教案5-3-1 第1课时 2021-10-264页
- 2020七年级数学下册 5平行线的性质2021-10-254页
- 七年级下册数学教案5-3-1 第2课时 2021-10-254页
- 2019七年级数学下册 5平行线的性质2021-10-255页
- 七年级下册数学教案5-3-1 第1课时 2021-10-254页