- 432.92 KB
- 2022-04-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.什么叫二次根式?2.两个基本性质:复习提问=aa(a≥0)-a(a<0)==∣a∣(a≥0)
思考:二次根式的除法有没有类似的法则呢?请试着自己举出一些例子.3.二次根式的乘法:算术平方根的积等于各个被开方数积的算术平方根积的算术平方根等于积中各因式的算术平方根的积.复习提问(a≥0,b≥0)
两个二次根式相除,等于把被开方数相除,作为商的被开方数计算下列各式,观察计算结果,你发现什么规律?==规律:
例4:计算解:两个二次根式相除,等于把被开方数相除,作为商的被开方数
试一试计算:解:如果根号前有系数,就把系数相除,仍旧作为二次根号前的系数。
商的算术平方根等于被除式的算术平方根除以除式的算术平方根。例5:化简解:两个二次根式相除,等于把被开方数相除,作为商的被开方数注意:如果被开方数是带分数,应先化成假分数。
练习一:解:
例6:计算解:在二次根式的运算中,最后结果一般要求(1)分母中不含有二次根式.(2)最后结果中的二次根式要求写成最简的二次根式的形式.把分母中的根号化去,使分母变成有理数,这个过程叫做分母有理化。
怎样形式才是最简二次根式1.被开方数不含分母2.被开方数不含能开得尽方的因数或因式
练习:把下列各式化简(分母有理化):解:注意:要进行根式化简,关键是要搞清楚分式的分子和分母都乘什么,有时还要先对分母进行化简。
1.在横线上填写适当的数或式子使等式成立。练习二:2.把下列各式的分母有理化:3.化简:()=a-1()=10()=4
5、如图,在Rt△ABC中,∠C=900,∠A=300,AC=2cm,求斜边AB的长ABCm>5
思考题:
1.利用商的算术平方根的性质化简二次根式。课堂小结:3.在进行分母有理化之前,可以先观察把能化简的二次根式先化简,再考虑如何化去分母中的根号。2.二次根式的除法有两种常用方法:(1)利用公式:(2)把除法先写成分式的形式,再进行分母有理化运算。
相关文档
- 八年级下数学课件八年级下册数学课2022-04-0123页
- 八年级下数学课件:19-2-1 正比例函2022-04-0125页
- 八年级下数学课件《函数的初步应用2022-04-0114页
- 八年级下数学课件《二次根式》 (2022-04-0123页
- 八年级下数学课件八年级下册数学课2022-04-0112页
- 八年级下数学课件八年级下册数学课2022-04-0111页
- 八年级下数学课件《条形统计图和扇2022-04-0130页
- 八年级下数学课件:18-2-3 正方形—2022-04-0118页
- 八年级下数学课件《分式的基本性质2022-04-0110页
- 八年级下数学课件八年级下册数学课2022-04-0112页