- 119.50 KB
- 2021-10-26 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
13.2.6 斜边直角边
1.会用“H.L.”判定两个直角三角形全等.
2.会综合应用各种方法判定两个直角三角形全等.
重点
用“H.L.”判定两个直角三角形全等.
难点
用综合法证明两个直角三角形全等.
一、创设情境
问题:舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.
(1)你能帮他想个办法吗?
(2)如果他只带了一个卷尺,能完成这个任务吗?
问题(1)学生可以回答去量斜边和一锐角,或直角边和一个锐角;但对于问题(2),学生则难肯定.工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?
二、探究新知
我们已经知道,对于两个三角形,如果有“边角边”或“角边角”或“角角边”或“边边边”分别对应相等,那么这两个三角形一定全等;如果有“角角角”分别对应相等,那么不能判定这两个三角形全等,这两个三角形可以有不同的大小;如果有“边边角”分别对应相等,也不能保证这两个三角形全等.
那么在两个直角三角形中,当斜边和一条直角边分别对应相等时,也具有“边边角”对应相等的条件,这时这两个直角三角形能否全等吗?
如图,已知两条线段(这两条线段长不相等),以长的线段为斜边、短的线段为一条直角边,画一个直角三角形.
把你画的直角三角形与其他同学画的直角三角形进行比较,所有的直角三角形都全等吗?
换两条线段,试试看,是否有同样的结论?
步骤:
1.画一线段AB,使它等于2 cm;
2.画∠MAB=90°;
3.以点B为圆心,以3 cm长为半径画圆弧,交射线AM于点C;
4.连结BC.
△ABC即为所求.
如图,在Rt△ABC和Rt△A′B′C′中,已知∠ACB=∠A′C′B′=90°,AB
2
=A′B′,AC=A′C′.
由于直角边AC=A′C′,我们移动其中的Rt△ABC,使点A与点A′,点C与点C′重合,且使点B与点B′分别位于线段A′C′的两侧.因为∠ACB=∠A′C′B=∠A′C′B′=90°,故∠B′C′B=∠A′C′B′+∠A′C′B=180°,因此点B,C′,B′在同一条直线上.由翻折可得∠B=∠B′.由“角角边”便可知这两个三角形全等.于是可得:
斜边和一条直角边分别相等的两个直角三角形全等.简记为H.L.(或斜边直角边).
三、练习巩固
1.如图,AC⊥AD,BC⊥BD,OE⊥CD,AC=BD.求证:DE=CE.
2.如图,AC⊥BC,AD⊥BD,CE⊥AB于点E,DF⊥AB于点F,AC=BD.求证:CE=DF.
四、小结与作业
小结
这节课,你学习了什么?有什么收获?有何困惑?与同伴交流的基础上,教师进行归纳总结.
作业
教材第76页习题13.2第6题.
本节课是在前面已经学习过的一般三角形的五种判定方法的基础上,研究直角三角形独有的判定方法“H.L.”,整节课按“操作—发现—归纳—运用”程序展开.教学中应将五种一般方法与“H.L.”综合运用,提高学生综合运用知识的能力,有时证明题中会涉及两次用全等的方法证明线段(或角)相等,要及时帮助同学们归纳总结,提升思维能力.
2