• 76.00 KB
  • 2021-10-26 发布

八年级数学上册第二章实数6实数教案新版北师大版

  • 2页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎6 实 数 ‎1.了解实数的概念和意义,并能按要求对实数进行分类.‎ ‎2.了解实数与数轴上的点是一一对应的,知道实数的绝对值、相反数的意义,会求已知数的绝对值和相反数.‎ 重点 实数的意义及分类.‎ 难点 理解实数和数轴上的点的一一对应的关系.‎ 一、复习导入 ‎(1)什么是有理数?有理数怎样分类?‎ ‎(2)什么是无理数?带根号的数都是无理数吗?‎ 二、探究新知 ‎1.实数的概念.‎ 课件出示题目:把下列各数分别填入相应的集合内:‎ ,,,π,-,, ,-,-, ,0,0.373 773 777 3…(相邻两个3之间的7的个数逐次加1).‎   ,无理数集合)‎ 引导学生得出实数概念并板书:有理数和无理数统称为实数,即实数可分为有理数和无理数.‎ 师:无理数和有理数一样,也有正负之分.‎ 你能把上面各数填入下面相应的集合内吗?‎ ‎,正数集合)  ,负数集合)‎ 从符号考虑,实数可以分为正实数、0、负实数.‎ ‎2.实数范围内相反数、倒数、绝对值的意义.‎ 师:的相反数是什么?的倒数是什么?,0,-π的绝对值分别是什么?‎ 小结:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.‎ 课件出示教材第39页“想一想”.‎ 指名回答后,板书:实数a的相反数为-a,绝对值为|a|,若a≠0,它的倒数为.‎ 总结:‎ ‎(1)相反数:a与-a互为相反数;0的相反数仍是0.‎ 2‎ ‎(2)倒数:当a≠0时,a与互为倒数(0没有倒数).‎ ‎(3)绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.‎ ‎3.实数的运算.‎ ‎(1)在有理数范围内,能进行哪些运算?适用哪些运算律?‎ ‎(2)判断下列各式是否成立.‎ ×=×,‎ ××=×=,‎ ‎4+7=(4+7)=11.‎ 总结:实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则和运算律对实数仍然适用.‎ ‎4.实数与数轴上的点的一一对应关系.‎ 课件出示教材第39页“议一议”.‎ 总结:‎ ‎(1)每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.即实数与数轴上的点是一一对应的.‎ ‎(2)在数轴上,右边的点表示的数总比左边的点表示的数大.‎ 拓展:(1)无理数是指无限不循环小数,并不是带根号的数都是无理数.‎ ‎(2)数的范围从有理数扩充到实数后,要注意有理数与无理数的区别.‎ 三、练习巩固 教材第39页“随堂练习”第1~3题.‎ 四、小结 ‎1.在实数范围内,相反数、倒数和绝对值的意义和有理数范围内的相反数、倒数和绝对值的意义完全一样.‎ ‎2.实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则和运算律对实数仍然适用.‎ ‎3.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数与数轴上的点是一一对应的.‎ ‎4.在数轴上,右边的点表示的数总比左边的点表示的数大.‎ 五、课外作业 教材第40页习题2.8第1~4题.‎ 本节课作为有理数的扩张,关注前后知识之间的内在联系,关注运用类比的思想学习新的知识,这样学生比较容易接受.根据学生的认知状况,借助类比学习实数的有关知识,如果学生整体认知水平较高,教学过程可以更加开放,在讨论了实数的两个分类标准之后,引导学生尝试自主地进行实数的分类,再进行交流.‎ 2‎