• 1.66 MB
  • 2021-11-01 发布

2019年春八年级数学下册第十八章平行四边形18-1平行四边形18-1-2平行四边形的判定第1课时课件

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
18.1.2 平行四边形的判定 第1课时 平行四边形的判定(一) 平行四边形的判定定理 (1)两组对边分别   的四边形是平行四边形.  (2)两组对角分别   的四边形是平行四边形.  (3)对角线   的四边形是平行四边形. 相等 相等 互相平分 探究点一:利用两组对边或两组对角分别相等判定平行四边形 【例1】如图,已知E,F,G,H分别是▱ ABCD的边AB,BC,CD,DA上的点,且AE=CG,BF=DH.求 证:GH∥EF. 【导学探究】 1.证明:△AEH≌  ,△BEF≌  .  2.由EH=   ,EF=   ,可得四边形EFGH是平行四边形.  △CGF △DGH GF GH 【例2】已知:如图,在▱ ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接 BF. (1)求证:四边形ABFC是平行四边形; 【导学探究】 1.证明△ABE≌  ,推出AE=   ,又BE=CE,可推出四边形ABFC是平行四边形. △FCE EF 探究点二:利用对角线互相平分判定平行四边形 (2)在不添加任何辅助线的情况下,请直接写出图中与△ABC面积相等的三角形.【导学 探究】 2.等底等高的三角形面积   ,三角形的中线把三角形分成的两个三角形的面积   .  相等 (2)解:图中与△ABC面积相等的三角形有△ACF,△BCF,△ABF,△ACD. 判定一个四边形是平行四边形时 (1)若没有画出对角线,可证明两组对边或两组对角分别相等. (2)若出现对角线,可利用两条对角线互相平分证明. 相等 1.(2018金乡期中)下列说法正确的是(   ) (A)对角线相等的四边形是平行四边形 (B)对角线互相平分的四边形是平行四边形 (C)对角线互相垂直的四边形是平行四边形 (D)对角线互相垂直且相等的四边形是平行四边形 2.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形 (   ) (A)OA=OC,OB=OD (B)AD∥BC,AB∥CD (C)AD=BC,AB=CD (D)AB=CD,AO=CO B D 3.如图,点D是直线l外一点,在l上取两点A,B,连接AD,分别以点B,D为圆心,AD,AB 的长为半径画弧,两弧交于点C,连接CD,BC,则四边形ABCD是平行四边形,理由是    .  4.要做一个平行四边形框架,只要将两根木条AC,BD的中点重叠并用钉子固定,这 样四边形ABCD就是平行四边形,这种做法的依据是  .  .  两组对边分别相等的四边形是平行四边形 两条对角线互相平分的四 边形是平行四边形 5.(2018镇江期中)已知,在四边形ABCD中,AD=AC=BC,∠B=∠D=40° (1)求∠DAC的度数; (1)解:因为AD=AC,∠D=40°, 所以∠ACD=40°, 所以∠DAC=180°-∠D-∠ACD=180°-40°-40°=100°. (2)求证:四边形ABCD是平行四边形. (2)证明:因为AC=BC,∠B=40°, 所以∠BAC=40°, 所以∠BAC=∠ACD, 所以AB∥CD. 因为∠DAB+∠B=∠DAC+∠BAC+∠B=100°+40°+40°=180°, 所以AD∥BC, 所以四边形ABCD是平行四边形.