• 104.90 KB
  • 2021-11-01 发布

八年级下数学课件八年级下册数学课件《等腰三角形与等边三角形的性质》 北师大版 (7)_北师大版

  • 14页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
等腰三角形的性质和判断 定理:等腰三角形的两个底角相等 (“等边对等角”) 你能用几种方法证明? 定理:等腰三角形的两个底角相等 (“等边对等角”) 已知:如图,在△ABC中,AB=AC 求证:∠B=∠C A CB D 定理:等腰三角形的顶角 平分线、 底边上的中线和高是同一条直线。 (三线合一) 定理:如果一个三角形的两个角相等, 那么这个这两个角所对的边也相等 (“等角对等边”) A B CD 已知:如图,在△ABC中,∠B=∠C 求证: AB=AC 例:如图,∠EAC是△ABC的外角, AD平分∠EAC,且AD∥BC. 求证:AB=AC A B C D E A B C D E 如果AB=AC,AD∥BC,那么 AD平分∠EAC吗? 证明:两角及其中一角的对边 对应相等的两个三角形全等。 练 习 证明:等边三角形的每个角都 等于 060 证明:线段垂直平分线上的点 到线段两端距离相等。 例:如图,AD是△ABC的角平分线 AB=AC+DC,求证:∠C=2∠B A B CD E 练:如图, 在△ABC中AD⊥BC于D、 AB+DB=DC 求证:∠B=2∠C A B CD E 练:如图,AB>AC,AD是角平分线, E是AB上的一点,AE=AC,EF∥BC交 AC于F,求证:CE平分∠DEF A B CD E F 例:如图1,等边△ABC中,D是AB上的一动点, 以CD为一边向上作等边△EDC,连AE, 求证:AE∥BC (2)如图2,将(1)中等边△ABC改为以BC为 底边的等腰三角形所作△EDC改为相似于△ABC, 请问:是否仍有AE∥BC?证明你的结论。 A B C D E 图1 A B C E D 图2 如图,点C为线段AB上的一点△ACM,△CBN 是等边三角形线段AN、CM相交于点E,线段 BM、CN相交于点F。(1)求证:AN=BM (2)△CEF是等边三角形 (3)将△ACM绕点C逆时针方向旋转 , 在图2中补出符合条件的的图形,并判断(1) (2)两题的结论是否仍然成立,证明你的结论。 090 A BC M N E F A BC M N