- 279.00 KB
- 2021-11-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
27.4正多边形和圆
教学目标:
(1) 使学生理解正多边形概念,初步掌握正多边形与圆的关系,
(2) 会通过等分圆心角的方法等分圆周,画出所需的正多边形,
(3) 能够用直尺和圆规作图,作出一些特殊的正多边形。
(4) 理解正多边形的中心、半径、边心距、中心角等概念
教学活动设计:
(一)观察、分析、归纳:
观察、分析:1.等边三角形的边、角各有什么性质?
2.正方形的边、角各有什么性质?
归纳:等边三角形与正方形的边、角性质的共同点.
教师组织学生进行,并可以提问学生问题.
(二)正多边形的概念:
(1)概念:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.
7
(2)概念理解:
①请同学们举例,自己在日常生活中见过的正多边形.(正三角形、正方形、正六边形,…….)
②矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?
(三)分析、发现:
问题:正多边形与圆有什么关系呢?什么是正多边形的中心?
发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.圆心就是正多边形的中心。
分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?你知道为什么吗?
问题:图中的正多边形,哪些是轴对称图形?哪些是中心对称图形?哪些既是轴对称图形,又是中心对称图形?如是轴对称图形,画出它的对称轴;如是中心对称图形,找出它的对称中心。(如果一个正多边形是中心对称图形,那么它的中心就是对称中心。)
7
思考:任何一个正多边形既是轴对称图形,又是中心对称图形吗?跟边数有何关系?
问题:用直尺和圆规作出正方形,正六多边形。
思考:如何作正三角形、正十二边形?
拓展1:已知:如图,五边形ABCDE内接于⊙O,AB=BC=CD=DE=EA.
求证:五边形ABCDE是正五边形.
拓展2:各内角都相等的圆内接多边形是否为正多边形
(四)相关概念
正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距.正多边形各边所对的外接圆的圆心角都相等.正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角.正n边形的每个中心角都等于 .
巩固练习:
7
1、正方形ABCD的外接圆圆心O叫做正方形ABCD的______.
2、正方形ABCD的内切圆⊙O的半径OE叫做正方形ABCD的______.
3、若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是______,它的每一个内角是______.
4、正n边形的一个外角度数与它的______角的度数相等.
练习:P144 1、2
小结
作业参考
设一直角三角形的面积为8㎝2,两直角边长分别为x㎝和y㎝.
(1)写出y(㎝)和x(㎝)之间的函数关系式
(2)画出这个函数关系所对应的图象
(3)根据图象,回答下列问题:
① 当x =2㎝时,y等于多少?② x为何值时,这个直角三角形是等腰直角三角形?
7
已知三角形的两边长分别是方程 的两根,第三边的长是方程 的根,求这个三角形的周长。
如图,PA和PB分别与⊙O相切于A,B两点,作直径AC,并延长交PB于点D.连结OP,CB.
(1)求证:OP∥CB;
(2)若PA=12,DB:DC=2:1,求⊙O的半径.
如图,平面直角坐标系中,直线AB与轴,轴分别交于A(3,0),B(0,)两点, ,点C为线段AB上的一动点,过点C作CD⊥轴于点D.
(1)求直线AB的解析式;
7
(2)若S梯形OBCD=,求点C的坐标;
(3)在第一象限内是否存在点P,使得以P,O,B为顶点的三角形与△OBA相似.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
如示意图,小华家(点A处)和公路( )之间竖立着一块35m长且平行于公路的巨型广告牌(DE).广告牌挡住了小华的视线,请在图中画出视点A的盲区,并将盲区内的那段公路计为BC.一辆以60km/h匀速行驶的汽车经过公路段的时间是3s,已知广告牌和公路的距离是40m,求小华家岛公路的距离(精确到1m).
7
如图1,已知中,,.过点作,且,连接交于点.
(1)求的长;
(2)以点为圆心,为半径作⊙A,试判断与⊙A是否相切,并说明理由;
(3)如图2,过点作,垂足为.以点为圆心,为半径作⊙A;以点为圆心,为半径作⊙C.若和的大小是可变化的,并且在变化过程中保持⊙A和⊙C相切,且使点在⊙A的内部,点在⊙A的外部,求和的变化范围.
A
B
C
P
E
E
A
B
C
P
D
图1
图2
7
相关文档
- 九年级下册数学教案 29-5 正多边形2021-11-061页
- 2012年初三数学密云一模试题2021-11-065页
- 九年级下册数学教案31-4 第1课时 2021-11-063页
- 初中数学竞赛辅导讲义及习题解答 2021-11-067页
- 九年级下册数学教案 2-2 第2课时 2021-11-064页
- 2011年昌平区初三数学一模试题及答2021-11-0612页
- 九年级下册数学教案27-2-1 第3课时2021-11-063页
- 九年级下册数学教案31-3 用频率估2021-11-063页
- 2019届初三数学中考复习 《圆》复2021-11-0616页
- 初中数学中考总复习课件PPT:第19课2021-11-0620页