• 211.09 KB
  • 2021-11-06 发布

人教数学九上弧长和扇形面积课时

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎24.4 弧长和扇形面积(第1课时) ‎ 教学内容 ‎ 1.n°的圆心角所对的弧长L=‎ ‎ 2.扇形的概念;‎ ‎ 3.圆心角为n°的扇形面积是S扇形=;‎ ‎ 4.应用以上内容解决一些具体题目.‎ ‎ 教学目标 ‎ 了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.‎ ‎ 通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长L=和扇形面积S扇=的计算公式,并应用这些公式解决一些题目.‎ ‎ 重难点、关键 ‎ 1.重点:n°的圆心角所对的弧长L=,扇形面积S扇=及其它们的应用.‎ ‎ 2.难点:两个公式的应用.‎ ‎ 3.关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程.‎ ‎ 教具、学具准备 ‎ 小黑板、圆规、直尺、量角器、纸板.‎ ‎ 教学过程 ‎ 一、复习引入 ‎ (老师口问,学生口答)请同学们回答下列问题.‎ ‎ 1.圆的周长公式是什么?‎ ‎ 2.圆的面积公式是什么?‎ ‎ 3.什么叫弧长?‎ ‎ 老师点评:(1)圆的周长C=2R ‎ (2)圆的面积S图=R2‎ ‎ (3)弧长就是圆的一部分.‎ ‎ 二、探索新知 ‎ (小黑板)请同学们独立完成下题:设圆的半径为R,则:‎ ‎ 1.圆的周长可以看作______度的圆心角所对的弧.‎ ‎ 2.1°的圆心角所对的弧长是_______.‎ ‎ 3.2°的圆心角所对的弧长是_______.‎ ‎ 4.4°的圆心角所对的弧长是_______.‎ ‎ ……‎ ‎ 5.n°的圆心角所对的弧长是_______.‎ ‎ (老师点评)根据同学们的解题过程,我们可得到:‎ ‎ n°的圆心角所对的弧长为 例1制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)‎ ‎ 分析:要求的弧长,圆心角知,半径知,只要代入弧长公式即可.‎ ‎ 解:R=‎40mm,n=110‎ ‎ ∴的长==≈76.8(mm)‎ ‎ 因此,管道的展直长度约为‎76.8mm.‎ 问题:(学生分组讨论)在一块空旷的草地上有一根柱子,柱子上拴着一条长5m的绳子,绳子的另一端拴着一头牛,如图所示:‎ ‎ (1)这头牛吃草的最大活动区域有多大?‎ ‎ (2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域有多大?‎ ‎ 学生提问后,老师点评:(1)这头牛吃草的最大活动区域是一个以A(柱子)为圆心,‎5m为半径的圆的面积.‎ ‎(2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域应该是n°圆心角的两个半径的n°圆心角所对的弧所围成的圆的一部分的图形,如图:‎ ‎ 像这样,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.‎ ‎ (小黑板),请同学们结合圆心面积S=R2的公式,独立完成下题:‎ ‎ 1.该图的面积可以看作是_______度的圆心角所对的扇形的面积.‎ ‎ 2.设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______.‎ ‎ 3.设圆的半径为R,2°的圆心角所对的扇形面积S扇形=_______.‎ ‎ 4.设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_______.‎ ‎ ……‎ ‎ 5.设圆半径为R,n°的圆心角所对的扇形面积S扇形=_______.‎ ‎ 老师检察学生练习情况并点评 ‎ 1.360 2.S扇形=R2 3.S扇形=R2 4.S扇形= 5.S扇形=‎ ‎ 因此:在半径为R的圆中,圆心角n°的扇形 S扇形=‎ 例2.如图,已知扇形AOB的半径为10,∠AOB=60°,求的长(结果精确到0.1)和扇形AOB的面积结果精确到0.1)‎ ‎ 分析:要求弧长和扇形面积,只要有圆心角,半径的已知量便可求,本题已满足.‎ ‎ 解:的长=×10=≈10.5‎ ‎ S扇形=×102=≈52.3‎ ‎ 因此,的长为‎25.1cm,扇形AOB的面积为‎150.7cm2.‎ ‎ 三、巩固练习 ‎ 课本P122练习.‎ ‎ 四、应用拓展 例3.(1)操作与证明:如图所示,O是边长为a的正方形ABCD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O处,并将纸板绕O点旋转,求证:正方形ABCD的边被纸板覆盖部分的总长度为定值a.‎ ‎(2)尝试与思考:如图a、b所示,将一块半径足够长的扇形纸板的圆心角放在边长为a的正三角形或边长为a的正五边形的中心点处,并将纸板绕O旋转,,当扇形纸板的圆心角为________时,正三角形边被纸覆盖部分的总长度为定值a;当扇形纸板的圆心角为_______时,正五边形的边长被纸板覆盖部分的总长度也为定值a.‎ ‎ ‎ ‎ (a) (b)‎ ‎ (3)探究与引申:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n 边形的中心O点处,若将纸板绕O点旋转,当扇形纸板的圆心角为_______时,正n边形的边被纸板覆盖部分的总长度为定值a,这时正n边形被纸板所覆盖部分的面积是否也为定值?若为定值,写出它与正n边形面积S之间的关系(不需证明);若不是定值,请说明理由.‎ 解:(1)如图所示,不妨设扇形纸板的两边与正方形的边AB、AD分别交于点M、N,连结OA、OD.‎ ‎ ∵四边形ABCD是正方形 ‎ ∴OA=OD,∠AOD=90°,∠MAO=∠NDO,‎ ‎ 又∠MON=90°,∠AOM=∠DON ‎ ∴△AMO≌△DNO ‎ ∴AM=DN ‎ ∴AM+AN=DN+AN=AD=a ‎ 特别地,当点M与点A(点B)重合时,点N必与点D(点A)重合,此时AM+AN仍为定值a ‎ 故总有正方形的边被纸板覆盖部分的总长度为定值a.‎ ‎ (2)120°;70°‎ ‎ (3);正n边形被纸板覆盖部分的面积是定值,这个定值是.‎ ‎ 五、归纳小结(学生小结,老师点评)‎ ‎ 本节课应掌握 ‎ 1.n°的圆心角所对的弧长L=‎ ‎ 2.扇形的概念.‎ ‎ 3.圆心角为n°的扇形面积是S扇形=‎ ‎ 4.运用以上内容,解决具体问题.‎ ‎ 六、布置作业 ‎ 1.教材P124 复习巩固1、2、3 P125 综合运用5、6、7.‎ ‎2.选用课时作业设计 第一课时作业设计 一、 选择题 ‎1.已知扇形的圆心角为120°,半径为6,则扇形的弧长是( ).‎ ‎ A.3 B.‎4‎ C.5 D.6‎ ‎ 2.如图1所示,把边长为2的正方形ABCD的一边放在定直线L上,按顺时针方向绕点D旋转到如图的位置,则点B运动到点B′所经过的路线长度为( )‎ A.1 B. C. D.‎ ‎ ‎ ‎ (1) (2) (3)‎ ‎ 3.如图2所示,实数部分是半径为‎9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( )‎ A.‎12‎m B.‎18‎m C.‎20‎m D.‎24‎m ‎ 二、填空题 ‎ 1.如果一条弧长等于R,它的半径是R,那么这条弧所对的圆心角度数为______, 当圆心角增加30°时,这条弧长增加________.‎ ‎2.如图3所示,OA=30B,则的长是的长的_____倍.‎ ‎ 三、综合提高题 ‎1.已知如图所示,所在圆的半径为R,的长为R,⊙O′和OA、OB分别相切于点C、E,且与⊙O内切于点D,求⊙O′的周长.‎ ‎2.如图,若⊙O的周长为‎20‎cm,⊙A、⊙B的周长都是‎4‎cm,⊙A在⊙O内沿⊙O滚动,⊙B在⊙O外沿⊙O滚动,⊙B转动6周回到原来的位置,而⊙A只需转动4周即可,你能说出其中的道理吗?‎ ‎[‎ ‎ 3.如图所示,在计算机白色屏幕上,有一矩形着色画刷ABCD,AB=1,AD=,将画刷以B为中心,按顺时针转动A′B′C′D′位置(A′点转在对角线BD上),求屏幕被着色的面积.‎ 答案:‎ 一、1.B 2.D 3.D 二、1.45° R 2.3‎ 三、1.连结OD、O′C,则O′在OD上 由=R,解得:∠AOB=60°,‎ 由Rt△OO′C解得⊙O′的半径r=R,所以⊙O′的周长为2r=R.‎ ‎2.⊙O、⊙A、⊙B的周长分别为‎20‎cm,‎4‎cm,‎4‎cm,‎ 可求出它的半径分别为10cm、2cm、2cm,‎ 所以OA=8cm,OB=12cm 因为圆滚动的距离实际等于其圆心经过的距离,‎ 所以⊙A滚动回原位置经过距离为2×8=16=4×4,‎ 而⊙B滚动回原位置经过距离为2×12=24=4×6.‎ 因此,与原题意相符.‎ ‎3.设屏幕被着色面积为S,‎ 则S=S△ABD+S扇形BDD`+S△BC`D`=S矩形ABCD+S扇形BDD`,‎ 连结BD′,‎ 在Rt△A′BD′中,A′B=1,A′D′=AD=,‎ ‎∴BD′=BD=2,∠DBD′=60°,‎ ‎∴S=·22+1·=+.‎ 24.4 弧长和扇形面积(第2课时)‎ ‎ 教学内容 ‎ 1.圆锥母线的概念.‎ ‎ 2.圆锥侧面积的计算方法 ‎ 3.计算圆锥全面积的计算方法.‎ ‎ 4.应用它们解决实际问题.‎ ‎ 教学目标 ‎ 了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用公式解决问题.‎ ‎ 通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题.‎ ‎ 重难点、关键 ‎ 1.重点:圆锥侧面积和全面积的计算公式.‎ ‎ 2.难点:探索两个公式的由来.‎ ‎ 3.关键:你通过剪母线变成面的过程.‎ ‎ 教具、学具准备 ‎ 直尺、圆规、量角器、小黑板.‎ ‎ 教学过程 ‎ 一、复习引入 ‎ 1.什么是n°的圆心角所对的弧长和扇形面积的计算公式,并请讲讲它们的异同点.‎ ‎2.问题1:一种太空囊的示意图如图所示,太空囊的外表面须作特别处理,以承受重返地球大气层时与空气摩擦后产生的高热,那么该太空囊要接受防高热处理的面积应由几部分组成的.‎ ‎ 老师点评:(1)n°圆心角所对弧长:L=,S扇形=,公式中没有n°,而是n;弧长公式中是R,分母是180;而扇形面积公式中是R,分母是360,两者要记清,不能混淆.‎ ‎ (2)太空囊要接受热处理的面积应由三部分组成;圆锥上的侧面积,圆柱的侧面积和底圆的面积.‎ ‎ 这三部分中,第二部分和第三部分我们已经学过,会求出其面积,但圆锥的侧面积,到目前为止,如何求,我们是无能为力,下面我们来探究它.‎ ‎ 二、探索新知 ‎ 我们学过圆柱的侧面积是沿着它的母线展开成长方形,同理道理,我们也把连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.‎ ‎ (学生分组讨论,提问二三位同学)‎ 问题2:与圆柱的侧面积求法一样,沿母锥一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形,设圆锥的母线长为L,底面圆的半径为r,如图24-115所示,那么这个扇形的半径为________,扇形的弧长为________,因此圆锥的侧面积为________,圆锥的全面积为________.‎ ‎ 老师点评:很显然,扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积S=,其中n可由2r=求得:n=,∴扇形面积S==rL;全面积是由侧面积和底面圆的面积组成的,所以全面积=rL+r2.‎ ‎ 例1.圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为58cm,高为‎20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到‎0.1cm2)‎ ‎ 分析:要计算制作20顶这样的纸帽至少要用多少平方厘米的纸,只要计算纸帽的侧面积.‎ ‎ 解:设纸帽的底面半径为rcm,母线长为Lcm,则 ‎ r=‎ ‎ L=≈22.03‎ ‎ S纸帽侧=rL≈×58×22.03=638.87(cm)‎ ‎ 638.87×20=12777.4(cm2)‎ ‎ 所以,至少需要‎12777.4cm2的纸.‎ ‎ 例2.已知扇形的圆心角为120°,面积为‎300‎cm2.‎ ‎ (1)求扇形的弧长;‎ ‎ (2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?‎ ‎ 分析:(1)由S扇形=求出R,再代入L=求得.(2)若将此扇形卷成一个圆锥,扇形的弧长就是圆锥底面圆的周长,就可求圆的半径,其截面是一个以底是直径,圆锥母线为腰的等腰三角形.‎ 解:(1)如图所示:‎ ‎ ∵300=‎ ‎ ∴R=30‎ ‎ ∴弧长L==20(cm)‎ ‎(2)如图所示:‎ ‎ ∵20=20r ‎ ∴r=10,R=30‎ ‎ AD==20‎ ‎ ∴S轴截面=×BC×AD ‎ =×2×10×20=200(cm2)‎ ‎ 因此,扇形的弧长是‎20‎cm卷成圆锥的轴截面是‎200‎cm2.‎ ‎ 三、巩固练习 ‎ 教材P124 练习1、2.‎ ‎ 四、应用拓展 ‎ 例3.如图所示,经过原点O(0,0)和A(1,-3),B(-1,5)两点的曲线是抛物线y=ax2+bx+c(a≠0).‎ ‎ (1)求出图中曲线的解析式;‎ ‎ (2)设抛物线与x轴的另外一个交点为C,以OC为直径作⊙M,如果抛物线上一点P作⊙M的切线PD,切点为D,且与y轴的正半轴交点为E,连结MD,已知点E的坐标为(0,m),求四边形EOMD的面积(用含m的代数式表示).‎ ‎(3)延长DM交⊙M于点N,连结ON、OD,当点P在(2)的条件下运动到什么位置时,能使得S四边形EOMD=S△DON请求出此时点P的坐标.‎ ‎ 解:(1)∵O(0,0),A(1,-3),B(-1,5)在曲线y=ax2+bx+c(a≠0)上 ‎ ∴‎ ‎ 解得a=1,b=-4,c=0‎ ‎ ∴图中曲线的解析式是y=x2-4x ‎(2)抛物线y=x2-4x与x轴的另一个交点坐标为c(4,0),‎ 连结EM,‎ ‎ ∴⊙M的半径为2,即OM=DM=2‎ ‎ ∵ED、EO都是⊙M的切线 ‎ ∴EO=ED ∴△EOM≌△EDM ‎ ∴S四边形EOMD=2S△OME=2×OM·OE=‎‎2m ‎ (3)设点D的坐标为(x0,y0)‎ ‎ ∵S△DON=2S△DOM=2×OM×y0=2y0‎ ‎ ∴S四边形ECMD=S△DON时即‎2m=2y0,m=y0‎ ‎ ∵m=y0‎ ‎ ∴ED∥x轴 ‎ 又∵ED为切线 ‎ ∴D(2,2)‎ ‎ ∵点P在直线ED上,故设P(x,2)‎ ‎ ∵P在圆中曲线y=x2-4x上 ‎ ∴2=x2-4x 解得:x==2±‎ ‎ ∴P1(2+,0),P2(2-,2)为所求.‎ ‎ 五、归纳小结(学生归纳,老师点评)‎ ‎ 本节课应掌握:‎ ‎ 1.什么叫圆锥的母线.‎ ‎ 2.会推导圆锥的侧面积和全面积公式并能灵活应用它们解决问题.‎ ‎ 六、布置作业 ‎ 1.教材P124 复习巩固4 P125 综合运用8 拓广探索9、10.‎ ‎ 2.选用课时作业设计.‎ ‎ 第二课时作业设计 ‎ 一、选择题 ‎ 1.圆锥的母线长为‎13cm,底面半径为‎5cm,则此圆锥的高线为( )‎ ‎ A.‎6cm B.‎8cm C.‎10cm D.‎‎12cm ‎ 2.在半径为‎50cm的圆形铁皮上剪去一块扇形铁皮,用剩余部分制作成一个底面直径为‎80cm,母线长为50cm的圆锥形烟囱帽,则剪去的扇形的圆心角度数为( )‎ ‎ A.228° B.144° C.72° D.36°‎ ‎ 3.如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从点A出发绕侧面一周,再回到点A的最短的路线长是( )‎ A.6 B. C.3 D.3‎ ‎ 二、填空题 ‎ 1.母线长为L,底面半径为r的圆锥的表面积=_______.‎ ‎ 2.矩形ABCD的边AB=‎5cm,AD=‎8cm,以直线AD为轴旋转一周,‎ 所得圆柱体的表面积是__________(用含的代数式表示)‎ ‎ 3.粮仓顶部是一个圆锥形,其底面周长为‎36m,母线长为‎8m,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头的重合部分,那么这座粮仓实际需用________m2的油毡.‎ ‎ 三、综合提高题 ‎ 1.一个圆锥形和烟囱帽的底面直径是‎40cm,母线长是120cm,需要加工这样的一个烟囱帽,请你画一画:‎ ‎ (1)至少需要多少厘米铁皮(不计接头)‎ ‎ (2)如果用一张圆形铁皮作为材料来制作这个烟囱帽,那么这个圆形铁皮的半径至少应是多少?‎ ‎2.如图所示,已知圆锥的母线长AB=‎8cm,轴截面的顶角为60°,求圆锥全面积.‎ ‎ 3.如图所示,一个几何体是从高为‎4m,底面半径为‎3cm的圆柱中挖掉一个圆锥后得到的,圆锥的底面就是圆柱的上底面,圆锥的顶点在圆柱下底面的圆心上,求这个几何体的表面积.‎ 答案:‎ 一、1.D 2.C 3.C 二、1.r2+rL 2.1 30cm2 3.158.4‎ 三、1.(1)2400cm2 (2)40cm ‎2.‎48‎cm2 ‎ ‎3.S表=S柱侧+S柱底+S锥侧=2×3×4+×32+×3×5=24+9+15=‎48‎cm2‎