- 290.52 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
北师大版九年级数学(下册)
第二章 二次函数
2.3确定二次函数表达式 课时练习
1.二次函数y=a(x-h)2+k的图象的顶点坐标是 .如果已知 坐标,那么再知道图象上另一点的坐标,就可以确定这个二次函数的表达式.
2.二次函数的各项系数中有两个是未知的,知道图象上 点的坐标,就可以确定这个二次函数的表达式.
3.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为 .
4.抛物线的形状、开口方向与二次函数y=x2-4x+3的图象相同,顶点为(-2,1),则该抛物线的函数表达式为( )
A.y=(x-2)2+1
B.y=(x+2)2-1
C.y=(x+2)2+1
D.y=-(x+2)2+1
5.如果抛物线y=-x2+bx+c经过A(0,-2),B(-1,1)两点,那么此抛物线经过( )
A.第一、二、三、四象限
B.第一、二、三象限
C.第一、二、四象限
D.第二、三、四象限
6.如果点(-2,-3)和(5,-3)都是抛物线y=ax2+bx+c上的点,那么抛物线的对称轴是( )
A.x=3
B.x=-3
C.x=
D.x=-
7.函数y=-x2+bx+c的图象如图2-3-1所示,则此抛物线的解析式为 .
图2-3-1
8.已知二次函数y=x2+bx+c的图象经过A(-1,0),B(3,0)两点,则其顶点坐标是 .
9.二次函数y=x2+bx+c的图象经过点(4,3),(3,0).
(1)求b,c的值;
(2)求出该二次函数图象的顶点坐标和对称轴.
10.如图2-3-2所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象的顶点为A(-2,-2),且过点B(0,2),则y与x的函数关系式为( )
图2-3-2
A.y=(x+2)2+2
B.y=(x-2)2+2
C.y=(x-2)2-2
D.y=(x+2)2-2
11.若二次函数y=ax2+bx+a2-2(a,b为常数)的图象如图2-3-3所示,则a的值为( )
图2-3-3
A.-2
B.-
C.1
D.
12.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为 .
13.如图2-3-4所示,已知二次函数y=x2+bx+c的图象经过点(-1,0),(1,-2),当y随x的增大而增大时,x的取值范围是 .
图2-3-4
14.如图2-3-5所示,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c的顶点为A,且经过点B.
(1)求该抛物线的表达式;
(2)若点C(m,-)在抛物线上,求m的值.
图2-3-5
参考答案
1.(h,k) 顶点
2.两
3.y=-x2+4x-3
4.C
5.D
6.C
7.y=-x2+2x+3
8.(1,-4)
9.解:(1)将点(4,3),(3,0)分别代入二次函数,得
解这个方程组,得
(2)由(1)得,二次函数表达式为y=x2-4x+3.
∵y=x2-4x+3=(x-2)2-1,
∴该二次函数图象的顶点坐标为(2,-1),对称轴为x=2.
10.D
11.D
12.y=-x2+4x-3
13.x>
14.解:(1)由一次函数y=-x-2,得点A的坐标为(-2,0),点B的坐标为(0,-2).
∵抛物线y=ax2+bx+c的顶点为A,
∴设抛物线的表达式为y=a(x+2)2.
将点B(0,-2)代入抛物线的表达式,得
-2=4a,解得a=-.
∴该抛物线的表达式为y=-(x+2)2.
(2)将点C(m,-)代入抛物线的表达式,得-=-,解得m=1或-5.
相关文档
- 2020九年级数学上册 第4章 相似三2021-11-114页
- 2020九年级化学下册酸碱指示剂2021-11-112页
- 2020九年级化学下册 第七章溶质质2021-11-115页
- 2020九年级道德与法治上册第一单元2021-11-117页
- 部编版九年级历史下册期中考试试卷2021-11-1151页
- 2020九年级数学下册 第二十九章由2021-11-117页
- 2020学年度九年级数学上册相似三角2021-11-117页
- 北师大版九年级数学上册第六章 反2021-11-11169页
- 2020九年级数学上册 第二十一配方2021-11-113页
- 2020九年级化学下册 第十单元 酸和2021-11-116页