• 267.50 KB
  • 2021-11-11 发布

九年级下册数学教案28-2-2 第1课时 解直角三角形的简单应用 人教版

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎28.2.2 应用举例 第1课时 解直角三角形的简单应用 ‎                   ‎ ‎1.通过生活中的实际问题体会锐角三角函数在解题过程中的作用;(重点)‎ ‎2.能够把实际问题转化为数学问题,建立数学模型,并运用解直角三角形求解.(难点)‎ 一、情境导入 为倡导“低碳生活”,人们常选择以自行车作为代步工具.图①所示的是一辆自行车的实物图,图②是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条直线上,且∠CAB=75°.‎ 你能求出车架档AD的长吗?‎ 二、合作探究 探究点:解直角三角形的简单应用 ‎【类型一】 求河的宽度[来源:学科网ZXXK]‎ ‎ 根据网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BDA=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.‎ 解析:设AD=xm,则AC=(x+82)m.在Rt△ABC中,根据三角函数得到AB=2.5(x+82)m,在Rt△ABD中,根据三角函数得到AB=4x,依此得到关于x的方程,进一步即可求解.‎ 解:设AD=xm,则AC=(x+82)m.在Rt△ABC中,tan∠BCA=,∴AB=AC·tan∠BCA=2.5(x+82).在Rt△ABD中,tan∠BDA=,∴AB=AD·tan∠BDA=4x,∴2.5(x+82)=4x,解得x=.∴AB=4x=4×≈546.7m.‎ 答:AB的长约为546.7m.‎ 方法总结:解题的关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.‎ 变式训练:见《学练优》本课时练习“课堂达标训练” 第3题[来源:学+科+网]‎ ‎【类型二】 求不可到达的两点的高度 ‎ 如图,放置在水平桌面上的台灯的灯臂AB长为30cm,灯罩BC长为20cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少(结果精确到0.1cm,参考数据:≈1.732)?‎ 解析:首先过点B作BF⊥CD于点F,作BG⊥AD于点G,进而求出FC的长,再求出BG的长,即可得出答案.[来源:Zxxk.Com][来源:Z*xx*k.Com]‎ ‎   解:过点B作BF⊥CD于点F,作BG⊥AD于点G,∴四边形BFDG是矩形,∴BG=FD.在Rt△BCF中,∠CBF=30°,∴CF=BC·sin30°=20×=10cm.在Rt△ABG中,∵∠BAG=60°,∴BG=AB·sin60°=30×=15cm,∴CE=CF+FD+DE=10+15+2=12+15≈38.0(cm).‎ 答:此时灯罩顶端C到桌面的高度CE约是38.0cm.‎ 方法总结:将实际问题抽象为数学问题,画出平面图形,构造出直角三角形转化为解直角三角形问题.‎ 变式训练:见《学练优》本课时练习“课后巩固提升”第6题 ‎【类型三】 方案设计类问题 ‎ 小锋家有一块四边形形状的空地(如图③,四边形ABCD),其中AD∥BC,BC=1.6m,AD=5.5m,CD=5.2m,∠C=90°,∠A=53°.小锋的爸爸想买一辆长4.9m,宽1.9m的汽车停放在这块空地上,让小锋算算是否可行.小锋设计了两种方案,如图①和图②所示.‎ ‎(1)请你通过计算说明小锋的两种设计方案是否合理;‎ ‎(2)请你利用图③再设计一种有别于小锋的可行性方案,并说明理由(参考数据:sin53°=0.8,cos53°=0.6,tan53°=).‎ 解析:(1)方案1,如图①所示,在Rt△AGE中,依据正切函数求得AG的长,‎ 进而求得DG的长,然后与汽车的宽度比较即可;方案2,如图②所示,在Rt△ALH中,依据正切函数求得AL的长,进而求得DL的长,然后与汽车的长度比较即可;(2)让汽车平行于AB停放,如图③,在Rt△AMN中,依据正弦函数求得AM的长,进而求得DM的长.在Rt△PDM中,依据余弦函数求得PM的长,然后与汽车的长度比较即可.‎ 解:(1)如图①,在Rt△AGE中,∵∠A=53°,∴AG==m≈3.68m,∴DG=AD-AG=5.5-3.68=1.82m<1.9m,故此方案不合理;如图②,在Rt△ALH中,∵∠A=53°,LH=1.9m,∴AL==≈1.43m,∴DL=AD-AL=5.5-1.43=4.07m<4.9m,故此方案不合理;[来源:学.科.网]‎ ‎(2)如图③,过DA上一点M作MN⊥AB于点N,过CD上一点P作PQ⊥AB于点Q,连PM,在Rt△AMN中,∵∠A=53°,MN=1.9m,∴AM==≈2.4,∴DM=5.5-2.4=3.1m.在Rt△PDM中,∵∠PMD=∠A=53°,DM=3.1m,∴PM==≈5.1m>4.9m,故此方案合理.‎ 方法总结:本题主要是利用三角函数解决实际问题,关键是把实际问题转化为解直角三角形的问题,利用三角函数解决问题.‎ 变式训练:见《学练优》本课时练习“课后巩固提升”第7题 三、板书设计 ‎1.求河宽和物体的高度;‎ ‎2.其他应用类问题.‎ ‎ 本节课为了充分发挥学生的主观能动性,可引导学生通过小组讨论,大胆地发表意见,提高学生学习数学的兴趣.能够使学生自己构造实际问题中的直角三角形模型,并通过解直角三角形解决实际问题.‎