- 68.00 KB
- 2021-11-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
年级
九年级
课题
26.1.1反比例函数的意义
课型
新授
教学媒体
多媒体
教
学
目
标
1.使学生理解并掌握反比例函数的概念。
2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。
3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。
经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念以及意义。
培养观察、推理、分析能力,体验数形结合的数学思想,认识反比例函数的应用价值。
重点
难点
理解反比例函数的概念,能根据已知条件写出函数解析式
理解反比例函数的概念
教学
准备
教师准备
是否需要课件
学生准备
一、创设情境、导入新课
1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?
2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?
问题提出:电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,
(1)你能用含有R的代数式表示I吗?
(2)利用写出的关系式完成下表:
R/Ω
20
40
60
80
100
I/A
当R越来越大时,I怎样变化?当R越来越小呢?
(3)变量I是R的函数吗?为什么?
学生小组合作讨论。
概念:如果两个变量x,y之间的关系可以表示成的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零。
学生探究反比例函数变量的相依关系,领会其概念。
留白:
(供教师个性化设计)
二、联系生活、丰富联想
做一做
1.一个矩形的面积为20,相邻的两条边长分别为xcm和ycm。那么变量y是变量x的函数吗?为什么?
学生先独立思考,再进行全班交流。
2.某村有耕地346.2公顷,人数数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?为什么?
学生先独立思考,再同桌交流,而后大组发言。
3.y是x的反比例函数,下表给出了x与y的一些值:
x
-2
-1
1
3
…
y
2
-1
……
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表。
学生先独立练习,而后再同桌交流,上讲台演示。
三、举例应用 创新提高:
例1.(补充)下列等式中,哪些是反比例函数
(1) (2) (3)xy=21 (4) (5)
(6) (7)y=x-4
分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式
例2.(补充)当m取什么值时,函数是反比例函数?
分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误。
解得m=-2
例3.(补充)已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5
求y与x的函数关系式
当x=-2时,求函数y的值
分析:此题函数y是由y1和y2两个函数组成的,要用待定系数法来解答,先根据题意分别设出y1、 y2与x的函数关系式,再代入数值,通过解方程或方程组求出比例系数的值。这里要注意y1与x和y2与x的函数关系中的比例系数不一定相同,故不能都设为k,要用不同的字母表示。
略解:设y1=k1x(k1≠0),(k2≠0),则,代入数值求得k1=2,k2=2,则,当x=-2时,y=-5
四、随堂练习
1.苹果每千克x元,花10元钱可买y千克的苹果,则y与x之间的函数关系式为
2.若函数是反比例函数,则m的取值是
3.矩形的面积为4,一条边的长为x,另一条边的长为y,则y与x的函数解析式为
4.已知y与x成反比例,且当x=-2时,y=3,则y与x之间的函数关系式是 ,当x=-3时,y=
5.函数中自变量x的取值范围是
五、课后练习
已知函数y=y1+y2,y1与x+1成正比例,y2与x成反比例,且当x=1时,y=0;当x=4时,y=9,求当x=-1时y的值 答案:y=4
六、课后反思:
授课时间:_____年_____月____日