- 46.83 KB
- 2022-02-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
六年级下册数学一课一练-1.4圆锥的体积
一、单选题
1.一个圆锥的体积是n立方厘米,和它等底等高的圆柱体的体积是()立方厘米。
A. n B. 2n C. 3n D. 4n
2.图中瓶底的面积和圆锥杯口的面积相等,将瓶子中的液体导入圆锥杯中,能倒满( )杯。
A. 2 B. 3 C. 4 D. 6
3.一个圆锥的体积是36立方厘米,底面积是12平方厘米,高是( )厘米.
A. 9 B. 6 C. 3
4.一个圆柱和一个圆锥的体积相等,高也相等.圆锥和圆柱底面积的比是( )
A. 3∶1 B. 1∶3 C. 1∶1
5.体积相等的圆柱和圆锥,如果它们的底面积相等,那么圆锥的高应是圆柱高的( )
A. 3倍 B. 6倍 C. D.
二、判断题
6.圆柱的体积等于圆锥体积的3倍。
7.圆锥体积是圆柱体积的三分之一.
8.一个圆锥的底面积是一个圆柱底面积的3倍,它们的高相等,则它们的体积也相等。
9.圆锥体积是圆柱体积的
10.等底等高的圆柱和长方体的体积相等.
三、填空题
11.一个圆柱形瓶子的高是2h , 一个圆锥形杯子的底面积与圆柱的底面积相等,高是h , 那么一瓶水倒入杯子中,能倒________杯.
12.一个圆柱和一个圆锥的底面积相等,体积也相等,圆柱的高是3cm,圆锥的高是________cm。
13.等底等高的圆柱和圆锥,体积之差是3.2立方分米,圆柱的体积是________立方分米。
14.一个圆柱和一个圆锥等底等高,它们的体积的差是50立方厘米,它们的体积的和是________立方厘米.
15.一个圆锥与一个圆柱的底面积和体积都相等,圆柱的高是4分米,圆锥的高是________分米。
四、解答题
16.一个圆锥形沙堆,高1.2m,底面周长是18.84m,每立方米沙约重1.7吨。这堆沙约重多少吨?(结果保留整数)
五、综合题
17.解答.
(1)三角形顶点A用数对表示是________.
(2)如果AC=4厘米,BC=3厘米,AB=5厘米,把三角形绕C点顺时针每次旋转90°,转动一圈后,A点走过的图形是________形,它的面积是________平方厘米.
(3)将三角形按3:1放大,画出放大后的图形.
(4)把这个图形绕AC轴旋转一圈形成的物体是________形,体积是________立方厘米.
六、应用题
18.在一个从里面量底面半径4厘米、高18厘米的圆柱形玻璃缸中,放入一个圆锥形铁块,铁块底面半径3厘米、高8厘米。注水将铁块全部淹没,当铁块取出后,水面下降了多少厘米?
参考答案
一、单选题
1.【答案】 C
【解析】解答:由题意可知,设圆柱的体积、圆锥的体积分别是 ,由题意可知:
分析:圆锥的体积公式和圆柱的体积公式。
2.【答案】 D
【解析】【解答】等底等高的圆柱体和圆锥体的体积之比是3:1,则图中瓶子里的液体可以倒满6杯圆锥杯.
故答案为:6.
【分析】根据“等底等高的圆柱体积是圆锥体积的3倍”可知,图中的圆柱是圆锥高的2倍,当底面积相等时,圆柱的体积是圆锥体积的6倍,据此解答.
3.【答案】A
【解析】【解答】36×3÷12
=108÷12
=9(厘米);
答:圆锥的高是9厘米。
【分析】根据圆锥的体积公式可得:圆锥的高=圆锥的体积×3÷底面积,由此代入数据即可解答。
故选:A
4.【答案】 A
【解析】【解答】解:根据圆锥和圆柱的体积公式可知,一个圆柱和一个圆锥的体积相等,高也相等,圆锥和圆柱底面积的比是3:1.
故答案为:A
【分析】等底等高的圆柱体积是圆锥体积的3倍,如果圆柱和圆锥体积相等,高也相等,那么圆锥的底面积是圆柱底面积的3倍.
5.【答案】 A
【解析】【解答】因为等底等高的圆柱的体积是圆锥体积的3倍,当一个圆柱和一个圆锥底面积相等,体积也相等时,则圆锥的高是圆柱高的3倍。
故答案为:A。
【分析】根据等底等高的圆柱的体积是圆锥体积的3倍,可知一个圆柱和一个圆锥底面积相等,体积也相等,那么圆锥的高是圆柱高的3倍,据此解答。
二、判断题
6.【答案】错误
【解析】【解答】等底等高的圆柱的体积等于圆锥体积的3倍,原题说法错误.
故答案为:错误.
【分析】一个圆柱的体积是与它等底等高的圆锥体积的3倍,原题没有注明“等底等高”或其它的条件,只说“圆柱的体积是圆锥体积的3倍”是错误的,据此判断.
7.【答案】 错误
【解析】【解答】圆锥体积的体积等于和它等底等高的圆柱体积的三分之一,题目中没有说圆锥和圆柱等底等高这个条件。
故答案为:错误
【分析】等底等高的圆锥体积是圆柱体积的三分之一。只有在圆柱和圆锥等底等高这个条件下,圆锥体积是圆柱体积的三分之一,根据以上分析可得答案。
8.【答案】正确
【解析】【解答】一个圆锥的底面积是一个圆柱底面积的3倍,它们的高相等,则它们的体积也相等,原题说法正确.
故答案为:正确.
【分析】等底等高的圆柱体积是圆锥体积的3倍,当圆锥的底面积是圆柱底面积的3倍,它们的高相等,则它们的体积也相等,据此解答.
9.【答案】错误
【解析】【解答】解:因圆柱和圆锥不是同底等高,故圆柱和圆锥的体积建立不了倍比关系。
故答案为:错误。
【分析】圆锥和圆柱只有同底等高时,圆锥的体积是圆柱的体积的,没有底和高的约束,无法比较。据此可求解。
10.【答案】正确
【解析】【解答】解:因为圆柱体和长方体等底等高,所以V柱=V长=sh; 所以等底等高的圆柱体和长方体的体积相等.这种说法是正确的.
故答案为:正确.
【分析】由于圆柱体和长方体的体积都可用底面积乘高来求得,当它们等底等高时,它们的体积是相等的,所以原题说法正确.
三、填空题
11.【答案】 6
【解析】【解答】解:设圆柱和圆锥的底面积都是S,则
2Sh÷Sh
=2Sh×
=6(杯)
故答案为:6.
【分析】根据题意可知,设圆锥形杯子的底面积与圆柱的底面积都是S,根据圆柱和圆锥的体积公式计算,据此解答.
12.【答案】9
【解析】【解答】解:3×3=9(cm)
故答案为:9.【分析】根据圆柱的体积公式V=sh,圆锥的体积公式V=sh,当圆柱和圆锥的体积相等、底面积也相等时,圆锥的高是圆柱的高的3倍,由此求出圆锥的高.
13.【答案】 4.8
【解析】【解答】3.2÷2×3
=1.6×3
=4.8(立方分米)
故答案为:4.8 。
【分析】 等底等高的圆柱和圆锥,圆柱的体积是圆锥体积的3倍,它们的体积之差是圆锥体积的2倍,用它们的体积之差÷2=圆锥的体积,然后用圆锥的体积×3=圆柱的体积,据此列式解答。
14.【答案】 100
【解析】【解答】50÷2×(1+3)
=50÷2×4
=25×4
=100(立方厘米)
故答案为:100.
【分析】根据题意可知,一个圆柱和一个圆锥等底等高,圆柱体积是圆锥体积的3倍,它们的体积的差是圆锥体积的2倍,体积之和是圆锥体积的(1+3)倍,据此列式解答.
15.【答案】 12
【解析】【解答】解:根据题意得:4=4×3=12(分米)。
故答案为:12。
【分析】因为圆锥和圆柱的底面积和体积都相等,所以两个图形的高一定不相等。对比分析得:圆锥高的正好是4分米,据此可求圆锥的高。
四、解答题
16.【答案】解:(18.84÷3.14÷2)2×3.14×1.2× ×1.7
=9×3.14×0.4×1.7
=19.2168(吨)
≈19(吨)
答:这堆沙约重19吨.
【解析】【分析】圆锥的体积=底面积×高×,用底面周长除以3.14再除以2求出底面半径,然后根据体积公式计算出沙堆的体积,再乘每立方米沙的重量即可求出总重量.
五、综合题
17.【答案】 (1)(10,5)
(2)圆 ;50.24
(3)解:如图,
(4)圆锥体 ;37.68
【解析】【解答】解:(1)因为,A点在图中丛列上对应的数是10,横行对应的数是5,所以,A点用数对表示(10,5);
(2)A点走过的图形是以C为圆心,以4厘米为半径的圆形;
所以,该图形的面积是:3.14×4×4=50.24(平方厘米);
(4)因为形成的图形是以底面半径为3厘米,高为4厘米的圆锥体,
所以,该图形的体积是: ×3.14×32×4,
=9.42×4,
=37.68(立方厘米);
故答案为:(10,5);圆,50.24;圆锥体,37.68.
【分析】(1)看A点在图中丛列上对应的数就是数对中的第一个数;横行对应的数就是数对中的第二个数;(2)根据题意知道A点走过的图形是以C为圆心,以4厘米为半径的圆形;利用圆的面积公式,S=πr2代入数据解决问题;(3)将三角形ABC的AC边和BC边分别扩大3倍,在图中画出即可;(4)把这个三角形绕AC轴旋转一圈形成的图形是以底面半径为3厘米,高为4厘米的圆锥体,根据圆锥的体积公式V= sh= πr2h,代入数据解决问题.根据各个问题的不同,利用相应的公式解决问题.
六、应用题
18.【答案】解:×3.14×32×8÷(3.14×42)
=×3.14×32×8÷(3.14×16)
=×3.14×32×8÷50.24
=3.14×3×8÷50.24
=9.42×8÷50.24
=75.36÷50.24
=1.5(厘米).
答:水面下降了1.5厘米.
【解析】【分析】根据题意可知,水面下降的体积等于圆锥的体积,先求出圆锥的体积,用公式:V=πr2h,然后再求出圆柱的底面积,用公式:S=πr2 , 最后用圆锥的体积÷圆柱的底面积=水面下降的高度,据此列式解答.