• 159.50 KB
  • 2021-05-10 发布

2018中考总复习方程组解应用题专题

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2. (2017辽宁大连第14题)某班学生去看演出,甲种票每张30元,乙种票每张20元.如果36名学生购票恰好用去860元.设甲种票买了张,乙种票买了张,依据题意,可列方程组为 .‎ ‎5.(2017四川自贡第15题)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:‎ ‎“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组   .‎ ‎7.(2017山东省济宁市)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是 .‎ ‎10. (2017哈尔滨第25题)威丽商场销售A、B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.‎ ‎(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?‎ ‎15. (2017内蒙古呼和浩特第20题)某专卖店有,两种商品.已知在打折前,买60件商品和30件商品用了1080元,买50件商品和10件商品用了840元;,两种商品打相同折以后,某人买500件商品和450件商品一共比不打折少花1960元,计算打了多少折?‎ ‎18. (2017湖南张家界第18题)某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后了出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如下表:‎ 假设文化衫全部售出,共获利1860元,求黑白两种文化衫各多少件?‎ ‎21. (2017海南第20题)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.‎ ‎24. (2017贵州六盘水第24题)甲乙两个施工队在六安(六盘水——安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设米,乙队每天铺设米.‎ ‎(1)依题意列出二元一次方程组;‎ ‎ (2)求出甲乙两施工队每天各铺设多少米?‎ ‎25. (2017新疆乌鲁木齐第18题)我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有个头,从下面看有条腿,问笼中鸡或兔各有多少只? ‎ ‎30.(2017浙江宁波第23题)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元. ‎ ‎(1)甲种商品与乙种商品的销售单价各多少元?‎ ‎(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?‎ ‎34.(2017湖北武汉第20题)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.‎ ‎(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;‎ ‎(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案. ‎ ‎35(2017湖南怀化第20题)为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元;购买3幅乒乓球拍和2幅羽毛球拍共需204元.‎ ‎(1)求购买1副乒乓球拍和1副羽毛球拍各需多少元;‎ ‎(2)若学校购买乒乓球拍和羽毛球拍共30幅,且支出不超过1480元,则最多能够购买多少副羽毛球拍?‎ ‎39.(2017四川泸州第21题)某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.‎ ‎(1)甲、乙两种书柜每个的价格分别是多少元?‎ ‎(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.‎ ‎41.(2017江苏徐州第24题)4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:‎ ‎ ‎ 根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄. ‎ ‎.‎ ‎43.(2017四川省绵阳市)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.‎ ‎(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?‎ ‎(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.‎ 考点:1.一元一次不等式组的应用;2.二元一次方程组的应用;3.方案型;4.最值问题.‎