- 300.89 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2017年天津市中考数学试卷
一、选择题(本大题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(3分)计算(﹣3)+5的结果等于( )
A.2 B.﹣2 C.8 D.﹣8
2.(3分)cos60°的值等于( )
A.3 B.1 C.22 D.12
3.(3分)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )
A. B. C. D.
4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )
A.0.1263×108 B.1.263×107 C.12.63×106 D.126.3×105
5.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )
A. B. C. D.
6.(3分)估计38的值在( )
A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
7.(3分)计算aa+1+1a+1的结果为( )
A.1 B.a C.a+1 D.1a+1
8.(3分)方程组&y=2x&3x+y=15的解是( )
28
A.&x=2&y=3 B.&x=4&y=3 C.&x=4&y=8 D.&x=3&y=6
9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是( )
A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC
10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=-3x的图象上,则y1,y2,y3的大小关系是( )
A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y3
11.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是( )
A.BC B.CE C.AD D.AC
12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为( )
A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1
二、填空题(本大题共6小题,每小题3分,共18分)
13.(3分)计算x7÷x4的结果等于 .
14.(3分)计算(4+7)(4-7)的结果等于 .
15.(3分)不透明袋子中装有6个球,其中有5个红球、1
28
个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .
16.(3分)若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是 (写出一个即可).
17.(3分)如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为 .
18.(3分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(1)AB的长等于 ;
(2)在△ABC的内部有一点P,满足S△PAB:S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明) .
三、解答题(本大题共7小题,共66分。解答应写出文字说明、演算步骤或推理过程)
19.(8分)解不等式组&x+1≥2①&5x≤4x+3②
请结合题意填空,完成本题的解答.
(1)解不等式①,得 ;
(2)解不等式②,得 ;
28
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式组的解集为 .
20.(8分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(1)本次接受调查的跳水运动员人数为 ,图①中m的值为 ;
(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.
21.(10分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.
(1)如图①,求∠T和∠CDB的大小;
(2)如图②,当BE=BC时,求∠CDO的大小.
22.(10分)如图,一艘海轮位于灯塔P的北偏东64°方向,距离灯塔120海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,求BP和BA的长(结果取整数).
参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,2取1.414.
28
23.(10分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.
设在同一家复印店一次复印文件的页数为x(x为非负整数).
(1)根据题意,填写下表:
一次复印页数(页)
5
10
20
30
…
甲复印店收费(元)
0.5
2
…
乙复印店收费(元)
0.6
2.4
…
(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;
(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.
24.(10分)将一个直角三角形纸片ABO放置在平面直角坐标系中,点A(3,0),点B(0,1),点O(0,0).P是边AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.
(1)如图①,当点A'在第一象限,且满足A'B⊥OB时,求点A'的坐标;
(2)如图②,当P为AB中点时,求A'B的长;
(3)当∠BPA'=30°时,求点P的坐标(直接写出结果即可).
28
25.(10分)已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).
(1)求该抛物线的解析式和顶点坐标;
(2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P'.
①当点P'落在该抛物线上时,求m的值;
②当点P'落在第二象限内,P'A2取得最小值时,求m的值.
28
2017年天津市中考数学试卷
参考答案与试题解析
一、选择题(本大题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(3分)(2017•天津)计算(﹣3)+5的结果等于( )
A.2 B.﹣2 C.8 D.﹣8
【考点】19:有理数的加法.菁优网版权所有
【分析】依据有理数的加法法则计算即可.
【解答】解:(﹣3)+5=5﹣3=2.
故选:A.
【点评】本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.
2.(3分)(2017•天津)cos60°的值等于( )
A.3 B.1 C.22 D.12
【考点】T5:特殊角的三角函数值.菁优网版权所有
【分析】根据特殊角三角函数值,可得答案.
【解答】解:cos60°=12,
故选:D.
【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
3.(3分)(2017•天津)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )
A. B. C. D.
【考点】P3:轴对称图形.菁优网版权所有
28
【分析】根据轴对称图形的概念对各选项分析判断即可得解.
【解答】解:A、不可以看作是轴对称图形,故本选项错误;
B、不可以看作是轴对称图形,故本选项错误;
C、可以看作是轴对称图形,故本选项正确;
D、不可以看作是轴对称图形,故本选项错误.
故选C.
【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
4.(3分)(2017•天津)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )
A.0.1263×108 B.1.263×107 C.12.63×106 D.126.3×105
【考点】1I:科学记数法—表示较大的数.菁优网版权所有
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于12630000有8位,所以可以确定n=8﹣1=7.
【解答】解:12630000=1.263×107.
故选:B.
【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
5.(3分)(2017•天津)如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )
A. B. C. D.
【考点】U2:简单组合体的三视图.菁优网版权所有
28
【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
【解答】解:从正面看易得第一层有3个正方形,第二层中间有一个正方形.
故选D.
【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
6.(3分)(2017•天津)估计38的值在( )
A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
【考点】2B:估算无理数的大小.菁优网版权所有
【分析】利用二次根式的性质,得出36<38<49,进而得出答案.
【解答】解:∵36<38<49,
∴6<38<7,
∴38的值在整数6和7之间.
故选C.
【点评】此题主要考查了估计无理数的大小,得出36<38<49是解题关键.
7.(3分)(2017•天津)计算aa+1+1a+1的结果为( )
A.1 B.a C.a+1 D.1a+1
【考点】6B:分式的加减法.菁优网版权所有
【分析】根据分式的运算法则即可求出答案.
【解答】解:原式=a+1a+1=1,
故选(A)
【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
8.(3分)(2017•天津)方程组&y=2x&3x+y=15的解是( )
A.&x=2&y=3 B.&x=4&y=3 C.&x=4&y=8 D.&x=3&y=6
28
【考点】98:解二元一次方程组.菁优网版权所有
【分析】利用代入法求解即可.
【解答】解:&y=2x①&3x+y=15②,
①代入②得,3x+2x=15,
解得x=3,
将x=3代入①得,y=2×3=6,
所以,方程组的解是&x=3&y=6.
故选D.
【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.
9.(3分)(2017•天津)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是( )
A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC
【考点】R2:旋转的性质.菁优网版权所有
【分析】由旋转的性质得到∠ABD=∠CBE=60°,AB=BD,推出△ABD是等边三角形,得到∠DAB=∠CBE,于是得到结论.
【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,
∴∠ABD=∠CBE=60°,AB=BD,
∴△ABD是等边三角形,
∴∠DAB=60°,
∴∠DAB=∠CBE,
∴AD∥BC,
故选C.
28
【点评】本题考查了旋转的性质,等边三角形的判定和性质,平行线的判定,熟练掌握旋转的性质是解题的关键.
10.(3分)(2017•天津)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=-3x的图象上,则y1,y2,y3的大小关系是( )
A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y3
【考点】G6:反比例函数图象上点的坐标特征.菁优网版权所有
【分析】根据反比例函数的性质判断即可.
【解答】解:∵k=﹣3<0,
∴在第四象限,y随x的增大而增大,
∴y2<y3<0,
∵y1>0,
∴y2<y3<y1,
故选:B.
【点评】本题考查的是反比例函数的性质,掌握反比例函数的增减性是解题的关键.
11.(3分)(2017•天津)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是( )
A.BC B.CE C.AD D.AC
28
【考点】PA:轴对称﹣最短路线问题;KH:等腰三角形的性质.菁优网版权所有
【分析】如图连接PC,只要证明PB=PC,即可推出PB+PE=PC+PE,由PE+PC≥CE,推出P、C、E共线时,PB+PE的值最小,最小值为CE的长度.
【解答】解:如图连接PC,
∵AB=AC,BD=CD,
∴AD⊥BC,
∴PB=PC,
∴PB+PE=PC+PE,
∵PE+PC≥CE,
∴P、C、E共线时,PB+PE的值最小,最小值为CE的长度,
故选B.
【点评】本题考查轴对称﹣最短问题,等腰三角形的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
12.(3分)(2017•天津)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为( )
A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1
【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.菁优网版权所有
【分析】直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出A,B,M点坐标,进而得出平移方向和距离,即可得出平移后解析式.
【解答】解:当y=0,则0=x2﹣4x+3,
(x﹣1)(x﹣3)=0,
28
解得:x1=1,x2=3,
∴A(1,0),B(3,0),
y=x2﹣4x+3
=(x﹣2)2﹣1,
∴M点坐标为:(2,﹣1),
∵平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,
∴抛物线向上平移一个单位长度,再向左平移3个单位长度即可,
∴平移后的解析式为:y=(x+1)2=x2+2x+1.
故选:A.
【点评】此题主要考查了抛物线与坐标轴交点求法以及二次函数的平移,正确得出平移方向和距离是解题关键.
二、填空题(本大题共6小题,每小题3分,共18分)
13.(3分)(2017•天津)计算x7÷x4的结果等于 x3 .
【考点】48:同底数幂的除法.菁优网版权所有
【分析】根据同底数幂的除法即可求出答案.
【解答】解:原式=x3,
故答案为:x3
【点评】本题考查同底数幂的除法,解题的关键是熟练运用整式的运算法则,本题属于基础题型.
14.(3分)(2017•天津)计算(4+7)(4-7)的结果等于 9 .
【考点】79:二次根式的混合运算.菁优网版权所有
【分析】根据平方差公式进行计算即可.
【解答】解:(4+7)(4-7)
=16﹣7
=9.
28
故答案为:9.
【点评】本题考查了二次根式的混合运算,掌握平方差公式是解题的关键.
15.(3分)(2017•天津)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 56 .
【考点】X4:概率公式.菁优网版权所有
【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【解答】解:∵共6个球,有5个红球,
∴从袋子中随机摸出一个球,它是红球的概率为56.
故答案为:56.
【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.
16.(3分)(2017•天津)若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是 ﹣2 (写出一个即可).
【考点】F7:一次函数图象与系数的关系.菁优网版权所有
【分析】据正比例函数的性质;当k<0时,正比例函数y=kx的图象经过第二、四象限,可确定k的取值范围,再根据k的范围选出答案即可.
【解答】解:∵若正比例函数y=kx的图象经过第二、四象限,
∴k<0,
∴符合要求的k的值是﹣2,
故答案为:﹣2.
【点评】本题主要考查了正比例函数的性质,关键是熟练掌握:在直线y=kx中,当k>0时,y随x的增大而增大,直线经过第一、三象限;当k<0时,y随x的增大而减小,直线经过第二、四象限.
28
17.(3分)(2017•天津)如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为 5 .
【考点】KX:三角形中位线定理;KQ:勾股定理;LE:正方形的性质.菁优网版权所有
【分析】延长GE交AB于点O,作PH⊥OE于点H,则PH是△OAE的中位线,求得PH的长和HG的长,在Rt△PGH中利用勾股定理求解.
【解答】解:延长GE交AB于点O,作PH⊥OE于点H.
则PH∥AB.
∵P是AE的中点,
∴PH是△AOE的中位线,
∴PH=12OA=12(3﹣1)=1.
∵直角△AOE中,∠OAE=45°,
∴△AOE是等腰直角三角形,即OA=OE=2,
同理△PHE中,HE=PH=1.
∴HG=HE+EG=1+1=2.
∴在Rt△PHG中,PG=PH2+HG2=12+22=5.
故答案是:5.
【点评】
28
本题考查了勾股定理和三角形的中位线定理,正确作出辅助线构造直角三角形是关键.
18.(3分)(2017•天津)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(1)AB的长等于 17 ;
(2)在△ABC的内部有一点P,满足S△PAB:S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明) 如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N.连接DN,EM,DN与EM相交于点P,点P即为所求. .
【考点】N4:作图—应用与设计作图;KQ:勾股定理.菁优网版权所有
【分析】(1)利用勾股定理即可解决问题;
(2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.
【解答】解:(1)AB=12+42=17.
故答案为17.
(2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.
28
理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:3,
△PAB的面积=12平行四边形ABME的面积,△PBC的面积=12平行四边形CDNB的面积,△PAC的面积=△PNG的面积=12△DGN的面积=12平行四边形DEMG的面积,
∴S△PAB:S△PBC:S△PCA=1:2:3.
【点评】本题考查作图﹣应用与设计、勾股定理、三角形的面积等知识,解题的关键是利用数形结合的思想解决问题,求出△PAB,△PBC,△PAC的面积,属于中考常考题型.
三、解答题(本大题共7小题,共66分。解答应写出文字说明、演算步骤或推理过程)
19.(8分)(2017•天津)解不等式组&x+1≥2①&5x≤4x+3②
请结合题意填空,完成本题的解答.
(1)解不等式①,得 x≥1 ;
(2)解不等式②,得 x≤3 ;
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式组的解集为 1≤x≤3 .
【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.菁优网版权所有
【分析】分别求出每一个不等式的解集,根据各不等式解集在数轴上的表示,由公共部分即可确定不等式组的解集.
28
【解答】解:(1)解不等式①,得:x≥1;
(2)解不等式②,得:x≤3;
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式组的解集为1≤x≤3,
故答案为:x≥1,x≤3,1≤x≤3.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
20.(8分)(2017•天津)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(1)本次接受调查的跳水运动员人数为 40 ,图①中m的值为 30 ;
(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.
【考点】VC:条形统计图;VB:扇形统计图;W2:加权平均数;W4:中位数;W5:众数.菁优网版权所有
【分析】(1)频数÷所占百分比=样本容量,m=100﹣27.5﹣25﹣7.5﹣10=30;
(2)根据平均数、众数和中位数的定义求解即可.
【解答】解:(1)4÷10%=40(人),
m=100﹣27.5﹣25﹣7.5﹣10=30;
故答案为40,30.
28
(2)平均数=(13×4+14×10+15×11+16×12+17×3)÷40=15,
16出现12次,次数最多,众数为16;
按大小顺序排列,中间两个数都为15,中位数为15.
【点评】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.
21.(10分)(2017•天津)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.
(1)如图①,求∠T和∠CDB的大小;
(2)如图②,当BE=BC时,求∠CDO的大小.
【考点】MC:切线的性质.菁优网版权所有
【分析】(1)根据切线的性质:圆的切线垂直于经过切点的半径,得∠TAB=90°,根据三角形内角和得∠T的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等得∠CDB的度数;
(2)如图②,连接AD,根据等边对等角得:∠BCE=∠BEC=65°,利用同圆的半径相等知:OA=OD,同理∠ODA=∠OAD=65°,由此可得结论.
【解答】解:(1)如图①,∵连接AC,
∵AT是⊙O切线,AB是⊙O的直径,
∴AT⊥AB,即∠TAB=90°,
∵∠ABT=50°,
∴∠T=90°﹣∠ABT=40°,
由AB是⊙O的直径,得∠ACB=90°,
∴∠CAB=90°﹣∠ABC=40°,
∴∠CDB=∠CAB=40°;
28
(2)如图②,连接AD,
在△BCE中,BE=BC,∠EBC=50°,
∴∠BCE=∠BEC=65°,
∴∠BAD=∠BCD=65°,
∵OA=OD,
∴∠ODA=∠OAD=65°,
∵∠ADC=∠ABC=50°,
∴∠CDO=∠ODA﹣∠ADC=65°﹣50°=15°.
【点评】本题考查了圆的切线、圆周角定理、等腰三角形的性质、三角形的内角和,熟练掌握切线的性质是关键,注意运用同弧所对的圆周角相等.
22.(10分)(2017•天津)如图,一艘海轮位于灯塔P的北偏东64°方向,距离灯塔120海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,求BP和BA的长(结果取整数).
参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,2取1.414.
28
【考点】TB:解直角三角形的应用﹣方向角问题.菁优网版权所有
【分析】如图作PC⊥AB于C.分别在Rt△APC,Rt△PCB中求解即可解决问题.
【解答】解:如图作PC⊥AB于C.
由题意∠A=64°,∠B=45°,PA=120,
在Rt△APC中,sinA=PCPA,cosA=ACPC,
∴PC=PA•sinA=120•sin64°,
AC=PA•cosA=120•cos64°,
在Rt△PCB中,∵∠B=45°,
∴PC=BC,
∴PB=PCsin45°=120×0.9022≈153.
∴AB=AC+BC=120•cos64°+120•sin64°
≈120×0.90+120×0.44
≈161.
答:BP的长为153海里和BA的长为161海里.
【点评】
28
本题考查了解直角三角形的应用﹣﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.
23.(10分)(2017•天津)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.
设在同一家复印店一次复印文件的页数为x(x为非负整数).
(1)根据题意,填写下表:
一次复印页数(页)
5
10
20
30
…
甲复印店收费(元)
0.5
1
2
3
…
乙复印店收费(元)
0.6
1.2
2.4
3.3
…
(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;
(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.
【考点】FH:一次函数的应用.菁优网版权所有
【分析】(1)根据收费标准,列代数式求得即可;
(2)根据收费等于每页收费乘以页数即可求得y1=0.1x(x≥0);当一次复印页数不超过20时,根据收费等于每页收费乘以页数即可求得y2=0.12x,当一次复印页数超过20时,根据题意求得y2=0.09x+0.6;
(3)设y=y1﹣y2,得到y与x的函数关系,根据y与x的函数关系式即可作出判断.
【解答】解:(1)当x=10时,甲复印店收费为:0,1×10=1;乙复印店收费为:0.12×10=1.2;
当x=30时,甲复印店收费为:0,1×30=3;乙复印店收费为:0.12×20+0.09×10=3.3;
故答案为1,3;1.2,3.3;
(2)y1=0.1x(x≥0);
y2=&0.12x(0≤x≤20)&0.09x+0.6(x>20);
28
(3)顾客在乙复印店复印花费少;
当x>70时,y1=0.1x,y2=0.09x+0.6,
∴y1﹣y2=0.1x﹣(0.09x+0.6)=0.01x﹣0.6,
设y=0.01x﹣0.6,
由0.01>0,则y随x的增大而增大,
当x=70时,y=0.1
∴x>70时,y>0.1,
∴y1>y2,
∴当x>70时,顾客在乙复印店复印花费少.
【点评】本题考查了一次函数的应用,读懂题目信息,列出函数关系式是解题的关键.
24.(10分)(2017•天津)将一个直角三角形纸片ABO放置在平面直角坐标系中,点A(3,0),点B(0,1),点O(0,0).P是边AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.
(1)如图①,当点A'在第一象限,且满足A'B⊥OB时,求点A'的坐标;
(2)如图②,当P为AB中点时,求A'B的长;
(3)当∠BPA'=30°时,求点P的坐标(直接写出结果即可).
【考点】RB:几何变换综合题.菁优网版权所有
【分析】(1)由点A和B的坐标得出OA=3,OB=1,由折叠的性质得:OA'=OA=3,由勾股定理求出A'B=OA'2+OB2=2,即可得出点A'的坐标为(2,1);
(2)由勾股定理求出AB=OA2+OB2=2,证出OB=OP=BP,得出△BOP
28
是等边三角形,得出∠BOP=∠BPO=60°,求出∠OPA=120°,由折叠的性质得:∠OPA'=∠OPA=120°,PA'=PA=1,证出OB∥PA',得出四边形OPA'B是平行四边形,即可得出A'B=OP=1;
(3)分两种情况:①点A'在y轴上,由SSS证明△OPA'≌△OPA,得出∠A'OP=∠AOP=12∠AOB=45°,得出点P在∠AOB的平分线上,由待定系数法求出直线AB的解析式为y=﹣33x+1,即可得出点P的坐标;
②由折叠的性质得:∠A'=∠A=30°,OA'=OA,作出四边形OAPA'是菱形,得出PA=OA=3,作PM⊥OA于M,由直角三角形的性质求出PM=12PA=32,把y=32代入y=﹣33x+1求出点P的纵坐标即可.
【解答】解:(1)∵点A(3,0),点B(0,1),
∴OA=3,OB=1,
由折叠的性质得:OA'=OA=3,
∵A'B⊥OB,
∴∠A'BO=90°,
在Rt△A'OB中,A'B=OA'2+OB2=2,
∴点A'的坐标为(2,1);
(2)在Rt△ABO中,OA=3,OB=1,
∴AB=OA2+OB2=2,
∵P是AB的中点,
∴AP=BP=1,OP=12AB=1,
∴OB=OP=BP
∴△BOP是等边三角形,
∴∠BOP=∠BPO=60°,
∴∠OPA=180°﹣∠BPO=120°,
由折叠的性质得:∠OPA'=∠OPA=120°,PA'=PA=1,
∴∠BOP+∠OPA'=180°,
28
∴OB∥PA',
又∵OB=PA'=1,
∴四边形OPA'B是平行四边形,
∴A'B=OP=1;
(3)设P(x,y),分两种情况:
①如图③所示:点A'在y轴上,
在△OPA'和△OPA中,{OA'=OAPA'=PAOP=OP,
∴△OPA'≌△OPA(SSS),
∴∠A'OP=∠AOP=12∠AOB=45°,
∴点P在∠AOB的平分线上,
设直线AB的解析式为y=kx+b,
把点A(3,0),点B(0,1)代入得:&3k+b=0&b=1,
解得:&k=-33&b=1,
∴直线AB的解析式为y=﹣33x+1,
∵P(x,y),
∴x=﹣33x+1,
解得:x=3-32,
∴P(3-32,3-32);
②如图④所示:
由折叠的性质得:∠A'=∠A=30°,OA'=OA,
∵∠BPA'=30°,
∴∠A'=∠A=∠BPA',
∴OA'∥AP,PA'∥OA,
∴四边形OAPA'是菱形,
28
∴PA=OA=3,作PM⊥OA于M,如图④所示:
∵∠A=30°,
∴PM=12PA=32,
把y=32代入y=﹣33x+1得:32=﹣33x+1,
解得:x=23-32,
∴P(23-32,32);
综上所述:当∠BPA'=30°时,点P的坐标为(3-32,3-32)或(23-32,32).
【点评】本题是几何变换综合题目,考查了折叠的性质、坐标与图形性质、勾股定理、平行四边形的判定与性质、全等三角形的判定与性质、角平分线的性质、直角三角形的性质、待定系数法求直线的解析式、菱形的判定与性质等知识;本题综合性强,难度较大.
25.(10分)(2017•天津)已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).
28
(1)求该抛物线的解析式和顶点坐标;
(2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P'.
①当点P'落在该抛物线上时,求m的值;
②当点P'落在第二象限内,P'A2取得最小值时,求m的值.
【考点】HF:二次函数综合题.菁优网版权所有
【分析】(1)把A点坐标代入抛物线解析式可求得b的值,则可求得抛物线解析式,进一步可求得其顶点坐标;
(2)①由对称可表示出P′点的坐标,再由P和P′都在抛物线上,可得到关于m的方程,可求得m的值;②由点P′在第二象限,可求得t的取值范围,利用两点间距离公式可用t表示出P′A2,再由点P′在抛物线上,可以消去m,整理可得到关于t的二次函数,利用二次函数的性质可求得其取得最小值时t的值,则可求得m的值.
【解答】解:
(1)∵抛物线y=x2+bx﹣3经过点A(﹣1,0),
∴0=1﹣b﹣3,解得b=﹣2,
∴抛物线解析式为y=x2﹣2x﹣3,
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴抛物线顶点坐标为(1,﹣4);
(2)①由P(m,t)在抛物线上可得t=m2﹣2m﹣3,
∵点P′与P关于原点对称,
∴P′(﹣m,﹣t),
∵点P′落在抛物线上,
∴﹣t=(﹣m)2﹣2(﹣m)﹣3,即t=﹣m2﹣2m+3,
∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m=3或m=﹣3;
②由题意可知P′(﹣m,﹣t)在第二象限,
28
∴﹣m<0,﹣t>0,即m>0,t<0,
∵抛物线的顶点坐标为(1,﹣4),
∴﹣4≤t<0,
∵P在抛物线上,
∴t=m2﹣2m﹣3,
∴m2﹣2m=t+3,
∵A(﹣1,0),P′(﹣m,﹣t),
∴P′A2=(﹣m+1)2+(﹣t)2=m2﹣2m+1+t2=t2+t+4=(t+12)2+154;
∴当t=﹣12时,P′A2有最小值,
∴﹣12=m2﹣2m﹣3,解得m=2-142或m=2+142,
∵m>0,
∴m=2-142不合题意,舍去,
∴m的值为2+142.
【点评】本题为二次函数的综合应用,涉及待定系数法、中心对称、二次函数的性质、勾股定理、方程思想等知识.在(1)中注意待定系数法的应用,在(2)①中求得P′点的坐标,得到关于m的方程是解题的关键,在(2)②中用t表示出P′A2是解题的关键.本题考查知识点较多,综合性较强,难度适中.
28