- 293.00 KB
- 2021-05-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第十五期:二次根式
按住ctrl键 点击查看更多中考数学资源
二次根式是一种重要的代数式,是初中代数重要的内容,也是中考命题的热点之一,与整式和分式相比,概念和运算都比较复杂,难度也有所增加,学习这部分内容首先要正确认识和掌握二次根式的概念、性质与运算,下面我们就一块分析一下:
知识点1:二次根式的概念及条件
例1:要使代数式有意义,则的取值范围是( )
A. B. C. D.
思路点拨:此题二次根式中被开方数的取值范围. 二次根式中,被开方数的取值范围是非负数,因此可列方程x≥0,解得x≥0 所以选A
例2:若使二次根式在实数范围内有意义,则x的取值范围是( )
A. B. C. D.
思路点拨:此题考查函数自变量的取值范围. 二次根式中,被开方数的取值范围是非负数,因此可列方程x-2≥0,解得x≥2. 所以选A
练习
1.在实数范围内,若有意义,则x的取值范围是( )
A.x ≥0 B.x ≤0 C.x >0 D.x <0
2. 下列二次根式中属于最简二次根式的是()
A. B. C. D.
答案:1.A 2.A
最新考题
1.(2010年湖北省荆州市)下列根式中属最简二次根式的是( )
A. B. C. D.
2.(2010乌鲁木齐)的相反数是( )
A. B. C. D.
3.(2010年绵阳市)已知是正整数,则实数n的最大值为( )
A.12 B.11 C.8 D.3
答案:1.A 2. A 3. B
知识点2:二次根式的性质
A.1 B.-1 C. 2 D. -2
思路点拨:因为,所以x=-2,y=2,所以,所以=-1
所以选B
练习:1.若实数满足,则的值是 .
2.已知: 。
答案:1. 2.-9
最新考题
1.(2010年福建莆田)若,则与3的大小关系是( )
A. 8. C. D.
2.(2010年贵州黔东南州)方程,当时,m的取值范围是( )
答案:1.B 2. C
知识点3:二次根式的化简
例1:已知mn﹤0,化简
思路点拨:将m移至根号外应考虑m的符号
由知,≥0,而mn﹤0,∴m﹤0,n﹥0∴原式=-
例2:已知,求x的范围
思路点拨:注意隐含条件x+4≥0,解为-4≤x≤0
练习:1. __________; =___________
2.将(a-1)根号外的因式移至根号内
答案:1. -3; |x| ;2.(a-1)=-·=-
最新考题
1.(2010年泸州市)计算: 。
2.(2010年山东济宁)已知为实数,那么等于( )
A. B. C. D.
答案:1. 2;2. D
知识点3:二次根式的运算
例1:计算:= .
思路点拨:本题考查了二次根式的化简和二次根式的加减法。二次根式的化简时,必须化成最简二次根式;二次根式加减法的实质就是合并同类项。因此,本题正确应该填:3。
例2:若,则xy的值为 ( )
A. B. C. D.
思路点拨:本题主要考查平方差公式。. 选D;
练习:1.计算的结果是 .
2.化简5-2=______
答案:1. ;2. 3
最新考题
1.(2010年衡阳市)下面计算正确的是()
A. B. C. D.
2.(2010年湖南省娄底市)先化简,再求值:
+÷,其中x=.
答案:1. B 2.原式=+×=+
=+===
当x=时,原式==1-
过关检测
一、选择题
1下列二次根式中,最简二次根式是( )
A. B. C. D.
2.下列式子中二次根式的个数有( )
⑴;⑵;⑶;⑷;⑸;⑹;⑺.
A.2个 B.3个 C.4个 D.5个
3.当有意义时,a的取值范围是( )
A.a≥2 B.a>2 C.a≠2 D.a≠-2
4.若
A. B. C. D.
5.估计的运算结果应在( )
A.1到2之间 B.2到3之间
C.3到4之间 D.4到5之间
6.对于二次根式,以下说法不正确的是( )
A.它是一个正数 B.是一个无理数
C.是最简二次根式 D.它的最小值是3
7.若,则x-y的值为( )
A.-1 B.1 C.2 D.3
8.若,,则的值是( )
A B C D
9.(2010年长沙市)下列各式中,运算正确的是( )
A. B.
C. D.
10.把中根号外面的因式移到根号内的结果是( )
A. B. C. D.
二、填空题
15.设5-的整数部分是a,小数部分是b,则a-b=
16.已知最简二次根式和的和是一个二次根式,那么b= ,和是 。
三、解答题
17.计算:
⑴; ⑵;
(3)
(4)计算:
18.若三角形的三边、、满足,若第三边为奇数,求的值.
19.对于题目先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下:
甲的解答为:原式;
乙的解答为:原式.
在两人的解法中谁的解答是错误的,为什么?
20.先化简,再求值:,其中
21已知+=0,求(x+y)x的值.
22已知:=,=,试比较与的大小.
参考答案
1.D 2.D 3. B 4.D 5. C 6. B 7. C 8. D 9. D 10.C
11.
12.
13. ,7
14. 2≤x<3
15. -1+
16. 2, 2
17.(1)-24 (2)1 (3)2+4-
(4)
=
=5
18.解:∵
∴
∴ 即
∵ 、、为三角形的三边
∴ 即
∵第三边为奇数
∴
19.甲的回答是错误的。∵a=9,∴而不等于1-a,
乙的解答是正确的。
20. 答案:原式=a2-3- a2+6a=6a -3
当时,原式=6
21.∵ ≥0,≥0,
而 +=0,
∴ 解得 ∴ (x+y)x=(2+1)2=9.
22. 解:设=2005,则
===,
===,
∵>, ∴<.