- 915.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
中考数学压轴题汇编(1)
开始
y与x的关系式
结束
输入x
输出y
1、(安徽)按右图所示的流程,输入一个数据x,根据y与x的关系式就输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:
(Ⅰ)新数据都在60~100(含60和100)之间;
(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大。
(1)若y与x的关系是y=x+p(100-x),请说明:当p=时,这种变换满足上述两个要求;
(2)若按关系式y=a(x-h)2+k (a>0)将数据进行变换,请写出一个满足上述要求的这种关系式。(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)
【解】(1)当P=时,y=x+,即y=。
∴y随着x的增大而增大,即P=时,满足条件(Ⅱ)……3分
又当x=20时,y==100。而原数据都在20~100之间,所以新数据都在60~100之间,即满足条件(Ⅰ),综上可知,当P=时,这种变换满足要求;……6分
(2)本题是开放性问题,答案不唯一。若所给出的关系式满足:(a)h≤20;(b)若x=20,100时,y的对应值m,n能落在60~100之间,则这样的关系式都符合要求。
如取h=20,y=,……8分
∵a>0,∴当20≤x≤100时,y随着x的增大…10分
令x=20,y=60,得k=60 ①
令x=100,y=100,得a×802+k=100 ②
由①②解得, ∴。………14分
2、(常州)已知与是反比例函数图象上的两个点.
(1)求的值;
(2)若点,则在反比例函数图象上是否存在点,使得以四点为顶点的四边形为梯形?若存在,求出点的坐标;若不存在,请说明理由.
解:(1)由,得,因此. 2分
(2)如图1,作轴,为垂足,则,,,因此.
由于点与点的横坐标相同,因此轴,从而.
当为底时,由于过点且平行于的直线与双曲线只有一个公共点,
故不符题意. 3分
当为底时,过点作的平行线,交双曲线于点,
过点分别作轴,轴的平行线,交于点.
由于,设,则,,
由点,得点.
因此,
解之得(舍去),因此点.
图2
图1
此时,与的长度不等,故四边形是梯形. 5分
如图2,当为底时,过点作的平行线,与双曲线在第一象限内的交点为.
由于,因此,从而.作轴,为垂足,
则,设,则,
由点,得点,
因此.
解之得(舍去),因此点.
此时,与的长度不相等,故四边形是梯形. 7分
如图3,当过点作的平行线,与双曲线在第三象限内的交点为时,
同理可得,点,四边形是梯形. 9分
图3
综上所述,函数图象上存在点,使得以四点为顶点的四边形为梯形,点的坐标为:或或. 10分
3、(福建龙岩)如图,抛物线经过的三个顶点,已知轴,点在轴上,点在轴上,且.
(1)求抛物线的对称轴;
(2)写出三点的坐标并求抛物线的解析式;
(3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形.若存在,求出所有符合条件的点坐标;不存在,请说明理由.
A
C
B
y
x
0
1
1
解:(1)抛物线的对称轴………2分
(2) …………5分
把点坐标代入中,解得………6分
…………………………………………7分
A
x
0
1
1
Q
N
M
K
y
(3)存在符合条件的点共有3个.以下分三类情形探索.
设抛物线对称轴与轴交于,与交于.
过点作轴于,易得,,,
① 以为腰且顶角为角的有1个:.
8分
在中,
9分
②以为腰且顶角为角的有1个:.
在中, 10分
11分
③以为底,顶角为角的有1个,即.
画的垂直平分线交抛物线对称轴于,此时平分线必过等腰的顶点.
过点作垂直轴,垂足为,显然.
.
于是 13分
14分
注:第(3)小题中,只写出点的坐标,无任何说明者不得分.
4、(福州)如图12,已知直线与双曲线交于两点,且点的横坐标为.
(1)求的值;
(2)若双曲线上一点的纵坐标为8,求的面积;
图12
(3)过原点的另一条直线交双曲线于两点(点在第一象限),若由点为顶点组成的四边形面积为,求点的坐标.
解:(1)∵点A横坐标为4 , ∴当 = 4时, = 2 .
∴ 点A的坐标为( 4,2 ).
∵ 点A是直线 与双曲线 (k>0)的交点 ,
∴ k = 4 ×2 = 8 .
(2) 解法一:如图12-1,
∵ 点C在双曲线上,当 = 8时, = 1
∴ 点C的坐标为 ( 1, 8 ) .
过点A、C分别做轴、轴的垂线,垂足为M、N,得矩形DMON .
S矩形ONDM= 32 , S△ONC = 4 , S△CDA = 9, S△OAM = 4 .
S△AOC= S矩形ONDM - S△ONC - S△CDA - S△OAM = 32 - 4 - 9 - 4 = 15 .
解法二:如图12-2,
过点 C、A分别做轴的垂线,垂足为E、F,
∵ 点C在双曲线上,当 = 8时, = 1 .
∴ 点C的坐标为 ( 1, 8 ).
∵ 点C、A都在双曲线上 ,
∴ S△COE = S△AOF = 4 。
∴ S△COE + S梯形CEFA = S△COA + S△AOF .
∴ S△COA = S梯形CEFA .
∵ S梯形CEFA = ×(2+8)×3 = 15 ,
∴ S△COA = 15 .
(3)∵ 反比例函数图象是关于原点O的中心对称图形 ,
∴ OP=OQ,OA=OB .
∴ 四边形APBQ是平行四边形 .
∴ S△POA = S平行四边形APBQ = ×24 = 6 .
设点P的横坐标为( > 0且),
得P ( , ) .
过点P、A分别做轴的垂线,垂足为E、F,
∵ 点P、A在双曲线上,∴S△POE = S△AOF = 4 .
若0<<4,如图12-3,
∵ S△POE + S梯形PEFA = S△POA + S△AOF,
∴ S梯形PEFA = S△POA = 6 .
∴ .
解得= 2,= - 8(舍去) .
∴ P(2,4).
若 > 4,如图12-4,
∵ S△AOF+ S梯形AFEP = S△AOP + S△POE,
∴ S梯形PEFA = S△POA = 6 .
∴,
解得 = 8, = - 2 (舍去) .
∴ P(8,1).
∴ 点P的坐标是P(2,4)或P(8,1).
5、(甘肃陇南)如图,抛物线交轴于A、B两点,交轴于点C,点P是它的
顶点,点A的横坐标是3,点B的横坐标是1.
(1)求、的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线
PC的位置关系,并说明理由.(参考数:,,)
解: (1)由已知条件可知: 抛物线经过A(-3,0)、B(1,0)两点.
∴ ……………………………………2分
解得 . ………………………3分
(2) ∵, ∴ P(-1,-2),C. …………………4分
设直线PC的解析式是,则 解得.
∴ 直线PC的解析式是. …………………………6分
说明:只要求对,不写最后一步,不扣分.
(3) 如图,过点A作AE⊥PC,垂足为E.
设直线PC与轴交于点D,则点D的坐标为(3,0). ………………………7分
在Rt△OCD中,∵ OC=,,
∴ . …………8分
∵ OA=3,,∴AD=6. …………9分
∵ ∠COD=∠AED=90o,∠CDO公用,
∴ △COD∽△AED. ……………10分
∴ , 即. ∴ . …………………11分
∵ ,
∴ 以点A为圆心、直径为5的圆与直线PC相离. …………12分
6、(贵阳)如图14,从一个直径是2的圆形铁皮中剪下一个圆心角为的扇形.
(1)求这个扇形的面积(结果保留).(3分)
(2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由.(4分)
(3)当的半径为任意值时,(2)中的结论是否仍然成立?请说明理由.(5分)
解:(1)连接,由勾股定理求得:
①
②
③
1分
2分
(2)连接并延长,与弧和交于,
1分
弧的长: 2分
圆锥的底面直径为: 3分
,不能在余料③中剪出一个圆作为底面与此扇形围成圆锥. 4分
(3)由勾股定理求得:
弧的长: 1分
圆锥的底面直径为: 2分
且
3分
即无论半径为何值, 4分
不能在余料③中剪出一个圆作为底面与此扇形围成圆锥.
7、(河南)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?
②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
B
A
C
D
P
O
Q
x
y
8、(湖北黄岗)已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且∠AOC=60°,点B的坐标是,点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,设秒后,直线PQ交OB于点D.
(1)求∠AOB的度数及线段OA的长;
(2)求经过A,B,C三点的抛物线的解析式;
(3)当时,求t的值及此时直线PQ的解析式;
(4)当a为何值时,以O,P,Q,D为顶点的三角形与相似?当a 为何值时,以O,P,Q,D为顶点的三角形与不相似?请给出你的结论,并加以证明.
9、(湖北荆门)如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.
(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;
(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;
(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.
图1
图2
解:(1)由已知PB平分∠APD,PE平分∠OPF,且PD、PF重合,则∠BPE=90°.∴∠OPE+∠APB=90°.又∠APB+∠ABP=90°,∴∠OPE=∠PBA.
∴Rt△POE∽Rt△BPA.…………………………………………………………2分
∴.即.∴y=(0<x<4).
且当x=2时,y有最大值.…………………………………………………4分
(2)由已知,△PAB、△POE均为等腰三角形,可得P(1,0),E(0,1),B(4,3).……6分
设过此三点的抛物线为y=ax2+bx+c,则∴
y=.…………………………………………………………8分
(3)由(2)知∠EPB=90°,即点Q与点B重合时满足条件.……………………9分
直线PB为y=x-1,与y轴交于点(0,-1).
将PB向上平移2个单位则过点E(0,1),
∴该直线为y=x+1.……………………………………………………………10分
由得∴Q(5,6).
故该抛物线上存在两点Q(4,3)、(5,6)满足条件.……………………………12分