- 480.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2015年高考文科数学试卷全国卷1(解析版)
参考答案
1.D
【解析】
试题分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A∩B={8,14},故选D.
考点:集合运算
2.A
【解析】
试题分析:∵=(3,1),∴=(-7,-4),故选A.
考点:向量运算
3.C
【解析】
试题分析:∴,∴z=,故选C.
考点:复数运算
4.C
【解析】
试题分析:从1,2,3,4,5中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为,故选C.
考点:古典概型
5.B
【解析】
试题分析:∵抛物线的焦点为(2,0),准线方程为,∴椭圆E的右焦点为(2,0),
∴椭圆E的焦点在x轴上,设方程为,c=2,
∵,∴,∴,∴椭圆E方程为,
将代入椭圆E的方程解得A(-2,3),B(-2,-3),∴|AB|=6,故选B.
考点:抛物线性质;椭圆标准方程与性质
6.B
【解析】
试题分析:设圆锥底面半径为r,则,所以,所以米堆的体积为=,故堆放的米约为÷1.62≈22,故选B.
考点:圆锥的性质与圆锥的体积公式
7.B
【解析】
试题分析:∵公差,,∴,解得=,∴,故选B.
考点:等差数列通项公式及前n项和公式
8.D
【解析】
试题分析:由五点作图知,,解得,,所以,令,解得<<,,故单调减区间为(,),,故选D.
考点:三角函数图像与性质
9.C
【解析】
试题分析:执行第1次,t=0.01,S=1,n=0,m==0.5,S=S-m=0.5,=0.25,n=1,S=0.5>t=0.01,是,循环,
执行第2次,S=S-m =0.25,=0.125,n=2,S=0.25>t=0.01,是,循环,
执行第3次,S=S-m =0.125,=0.0625,n=3,S=0.125>t=0.01,是,循环,
执行第4次,S=S-m=0.0625,=0.03125,n=4,S=0.0625>t=0.01,是,循环,
执行第5次,S=S-m =0.03125,=0.015625,n=5,S=0.03125>t=0.01,是,循环,
执行第6次,S=S-m=0.015625,=0.0078125,n=6,S=0.015625>t=0.01,是,循环,
执行第7次,S=S-m=0.0078125,=0.00390625,n=7,S=0.0078125>t=0.01,否,输出n=7,故选C.
考点:程序框图
10.A
【解析】
试题分析:∵,∴当时,,则,此等式显然不成立,
当时,,解得,
∴=,故选A.
考点:分段函数求值;指数函数与对数函数图像与性质
11.B
【解析】
试题分析:由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r,圆柱的高为2r,其表面积为==16 + 20,解得r=2,故选B.
考点:简单几何体的三视图;球的表面积公式;圆柱的测面积公式
12.C
【解析】
试题分析:设是函数的图像上任意一点,它关于直线对称为(),由已知知()在函数的图像上,∴,解得,即,∴,解得,故选C.
考点:函数对称;对数的定义与运算
13.6
【解析】
试题分析:∵,∴数列是首项为2,公比为2的等比数列,
∴,∴,∴n=6.
考点:等比数列定义与前n项和公式
14.1
【解析】
试题分析:∵,∴,即切线斜率,
又∵,∴切点为(1,),∵切线过(2,7),∴,解得1.
考点:利用导数的几何意义求函数的切线;常见函数的导数;
15.4
【解析】
试题分析:作出可行域如图中阴影部分所示,作出直线:,平移直线,当直线:z=3x+y过点A时,z取最大值,由解得A(1,1),∴z=3x+y的最大值为4.
考点:简单线性规划解法
16.
【解析】
试题分析:设双曲线的左焦点为,由双曲线定义知,,
∴△APF的周长为|PA|+|PF|+|AF|=|PA|++|AF|=|PA|++|AF|+,
由于是定值,要使△APF的周长最小,则|PA|+最小,即P、A、共线,
∵,(-3,0),∴直线的方程为,即代入整理得,解得或
(舍),所以P点的纵坐标为,
∴==.
考点:双曲线的定义;直线与双曲线的位置关系;最值问题
17.(Ⅰ)(Ⅱ)1
【解析】
试题分析:(Ⅰ)先由正弦定理将化为变得关系,结合条件,用其中一边把另外两边表示出来,再用余弦定理即可求出角B的余弦值;(Ⅱ)由(Ⅰ)知,根据勾股定理和即可求出c,从而求出的面积.
试题解析:(Ⅰ)由题设及正弦定理可得.
又,可得,,
由余弦定理可得.
(Ⅱ)由(1)知.
因为90°,由勾股定理得.
故,得.
所以ABC的面积为1.
考点:正弦定理;余弦定理;运算求解能力
18.(Ⅰ)见解析(Ⅱ)
【解析】
试题分析:(Ⅰ)由四边形ABCD为菱形知ACBD,由BE平面ABCD知ACBE,由线面垂直判定定理知AC平面BED,由面面垂直的判定定理知平面平面;(Ⅱ)设AB=,通过解直角三角形将AG、GC、GB、GD用x表示出来,在AEC中,用x表示EG,在EBG中,用x表示EB,根据条件三棱锥的体积为求出
x,即可求出三棱锥的侧面积.
试题解析:(Ⅰ)因为四边形ABCD为菱形,所以ACBD,
因为BE平面ABCD,所以ACBE,故AC平面BED.
又AC平面AEC,所以平面AEC平面BED
(Ⅱ)设AB=,在菱形ABCD中,由ABC=120°,可得AG=GC=,GB=GD=.
因为AEEC,所以在AEC中,可得EG=.
由BE平面ABCD,知EBG为直角三角形,可得BE=.
由已知得,三棱锥E-ACD的体积.故=2
从而可得AE=EC=ED=.
所以EAC的面积为3,EAD的面积与ECD的面积均为.
故三棱锥E-ACD的侧面积为.
考点:线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力
19.(Ⅰ)适合作为年销售关于年宣传费用的回归方程类型(Ⅱ)(Ⅲ)46.24
【解析】
试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;(Ⅱ)令,先求出建立关于的线性回归方程,即可关于的回归方程;(Ⅲ)(ⅰ)利用关于的回归方程先求出年销售量的预报值,再根据年利率z与x、y的关系为z=0.2y-x即可年利润z的预报值;(ⅱ)根据(Ⅱ)的结果知,年利润z的预报值,列出关于的方程,利用二次函数求最值的方法即可求出年利润取最大值时的年宣传费用.
试题解析:(Ⅰ)由散点图可以判断,适合作为年销售关于年宣传费用的回归方程类型.
(Ⅱ)令,先建立关于的线性回归方程,由于=
,
∴=563-68×6.8=100.6.
∴关于的线性回归方程为,
∴关于的回归方程为.
(Ⅲ)(ⅰ)由(Ⅱ)知,当=49时,年销售量的预报值
=576.6,
.
(ⅱ)根据(Ⅱ)的结果知,年利润z的预报值
,
∴当=,即时,取得最大值.
故宣传费用为46.24千元时,年利润的预报值最大.……12分
考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识
20.(Ⅰ)(Ⅱ)2
【解析】
试题分析:(Ⅰ)设出直线l的方程,利用圆心到直线的距离小于半径列出关于k的不等式,即可求出k的取值范围;(Ⅱ)设,将直线l方程代入圆的方程化为关于x的一元二次方程,利用韦达定理将用k表示出来,利用平面向量数量积的坐标公式及列出关于k方程,解出k,即可求出|MN|.
试题解析:(Ⅰ)由题设,可知直线l的方程为.
因为l与C交于两点,所以.
解得.
所以的取值范围是.
(Ⅱ)设.
将代入方程,整理得,
所以
,
由题设可得,解得,所以l的方程为.
故圆心在直线l上,所以.
考点:直线与圆的位置关系;设而不求思想;运算求解能力
21.(Ⅰ)当时,没有零点;当时,存在唯一零点.(Ⅱ)见解析
【解析】
试题分析:(Ⅰ)先求出导函数,分与考虑的单调性及性质,即可判断出零点个数;(Ⅱ)由(Ⅰ)可设在的唯一零点为,根据的正负,即可判定函数的图像与性质,求出函数的最小值,即可证明其最小值不小于,即证明了所证不等式.
试题解析:(Ⅰ)的定义域为,.
当时,,没有零点;
当时,因为单调递增,单调递增,所以在单调递增.又,当b满足且时,,故当时,存在唯一零点.
(Ⅱ)由(Ⅰ),可设在的唯一零点为,当时,;
当时,.
故在单调递减,在单调递增,所以当时,取得最小值,最小值为.
由于,所以.
故当时,.
考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.
22.(Ⅰ)见解析(Ⅱ)60°
【解析】
试题分析:(Ⅰ)由圆的切线性质及圆周角定理知,AE⊥BC,AC⊥AB,由直角三角形中线性质知DE=DC,OE=OB,利用等量代换可证∠DEC+∠OEB=90°,即∠OED=90°,所以DE是圆O的切线;(Ⅱ)设CE=1,由得,AB=,设AE=,由勾股定理得,由直角三角形射影定理可得,列出关于的方程,解出,即可求出∠ACB的大小.
试题解析:(Ⅰ)连结AE,由已知得,AE⊥BC,AC⊥AB,
在Rt△AEC中,由已知得DE=DC,∴∠DEC=∠DCE,
连结OE,∠OBE=∠OEB,
∵∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,
∴∠OED=90°,∴DE是圆O的切线.
(Ⅱ)设CE=1,AE=,由已知得AB=,,
由射影定理可得,,
∴,解得=,∴∠ACB=60°.
考点:圆的切线判定与性质;圆周角定理;直角三角形射影定理
23.(Ⅰ),(Ⅱ)
【解析】
试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得,的极坐标方程;(Ⅱ)将将代入即可求出|MN|,利用三角形面积公式即可求出的面积.
试题解析:(Ⅰ)因为,
∴的极坐标方程为,的极坐标方程为.……5分
(Ⅱ)将代入,得,解得=,=,|MN|=-=,
因为的半径为1,则的面积=.
考点:直角坐标方程与极坐标互化;直线与圆的位置关系
24.(Ⅰ)(Ⅱ)(2,+∞)
【解析】
试题分析:(Ⅰ)利用零点分析法将不等式f(x)>1化为一元一次不等式组来解;(Ⅱ)将化为分段函数,求出与轴围成三角形的顶点坐标,即可求出三角形的面积,根据题意列出关于的不等式,即可解出的取值范围.
试题解析:(Ⅰ)当a=1时,不等式f(x)>1化为|x+1|-2|x-1|>1,
等价于或或,解得,
所以不等式f(x)>1的解集为.
(Ⅱ)由题设可得,,
所以函数的图像与轴围成的三角形的三个顶点分别为,,,所以△ABC的面积为.
由题设得>6,解得.
所以的取值范围为(2,+∞).
考点:含绝对值不等式解法;分段函数;一元二次不等式解法