- 404.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
函数的奇偶性
知识梳理
1.什么是奇函数_____________________________________________________________
2什么是偶函数
3.奇函数偶函数的图像特征________________________________
4奇函数偶函数的性质. _______________________________
重点难点聚焦:
1使学生了解奇偶性的概念,会利用定义判断简单函数的奇偶性
2在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的思想方法.
再现型题组:
1.函数f(x)=x(-1﹤x≦1)的奇偶性是 ( )
A.奇函数非偶函数 B.偶函数非奇函数
C.奇函数且偶函数 D.非奇非偶函数
2. 已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx是( )
A.奇函数 B.偶函数
C.既奇又偶函数 D.非奇非偶函数
3.函数的图像大致为
巩固型题组:
4. 判断下列函数的奇偶性:
(1)f(x)=lg(-x);
(2)f(x)=+
(3) f(x)=
.
6
5.定义在(-1,1)上的奇函数f(x)是减函数,且f(1-a)+f(1-a2)<0,求a的取值范围
提高型题组
6.已知函数是奇函数,且上是增函数,
(1)求a,b,c的值;
(2)当x∈[-1,0)时,讨论函数的单调性.
7.定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求证f(x)为奇函数;
(2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.
6
反馈型题组
8下列四个命题:
(1)f(x)=1是偶函数;
(2)g(x)=x3,x∈(-1,1是奇函数;
(3)若f(x)是奇函数,g(x)是偶函数,则H(x)=f(x)·g(x)一定是奇函数;
(4)函数y=f(|x|)的图象关于y轴对称,其中正确的命题个数是 ( )
A.1 B.2 C.3 D.4
9.下列函数既是奇函数,又在区间上单调递减的是( )
A. B. C. D.
10若y=f(x)(x∈R)是奇函数,则下列各点中,一定在曲线y=f(x)上的是( )
A.(a,f(-a)) B.(-sina,-f(-sina))
C.(-lga,-f(lg)) D.(-a,-f(a))
11. 已知f(x)=x4+ax3+bx-8,且f(-2)=10,则f(2)=_____________。
12.已知是R上的奇函数,则a =
13.若f(x)为奇函数,且在(-∞,0)上是减函数,又f(-2)=0,则xf(x)<0的解集为________
14.函数的图象大致是
15.定义在R上的函数满足,则的值为
6
(A)-1 (B) 0 (C) 1 (D) 2
16.已知
(1)判断f(x)的奇偶性;
(2)证明f(x)>0。
17.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1、x2∈D,有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明;
(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.
知识拓展(函数的图像变换)
1. 常见的图象变换
①函数的图象是把函数的图象沿轴______________如设的图像与的图像关于直线对称,的图像由的图像向右平移1个单位得到,则为__________(答: )
②函数(的图象是把函数的图象沿轴向右平移个单位得到的。如..要得到的图像,只需作关于_____轴对称的图像,再向____平移3个单位而得到(答:;右);.
③函数+的图象是把函数助图象沿轴向上平移个单位得到的;
④函数+的图象是把函数助图象沿轴向下平移个单位得到的;如将函数的图象向右平移2个单位后又向下平移2个单位,所得图象如果与原图象关于直线对称,那么 (答:C)
⑤函数的图象是把函数的图象沿轴伸缩为原来的
6
得到的。如(1)将函数的图像上所有点的横坐标变为原来的(纵坐标不变),再将此图像沿轴方向向左平移2个单位,所得图像对应的函数为_____(答:);(2)如若函数是偶函数,则函数的对称轴方程是_______(答:).
⑥函数的图象是把函数的图象沿轴伸缩为原来的倍得到的.
2. 函数的对称性。
①满足条件的函数的图象关于直线对称。如已知二次函数满足条件且方程有等根,则=_____(答:);
②点关于轴的对称点为;函数关于轴的对称曲线方程为;
③点关于轴的对称点为;函数关于轴的对称曲线方程为;
④点关于原点的对称点为;函数关于原点的对称曲线方程为;
⑤.点关于直线的对称点为;曲线关于直线的对称曲线的方程为;点关于直线的对称点为;曲线关于直线的对称曲线的方程为。如己知函数,若的图像是,它关于直线对称图像是关于原点对称的图像为对应的函数解析式是___________(答:);
⑥曲线关于点的对称曲线的方程为。如若函数与的图象关于点(-2,3)对称,则=______(答:)
⑦形如的图像是双曲线,其两渐近线分别直线
(由分母为零确定)和直线(由分子、分母中的系数确定),对称中心是点。如已知函数图象与关于直线对称,且图象关于点(2,-3)对称,则a的值为______(答:2)
⑧的图象先保留原来在轴上方的图象,作出轴下方的图象关于轴的对称图形,然后擦去轴下方的图象得到;的图象先保留在轴右方的图象,擦去轴左方的图象,然后作出轴右方的图象关于轴的对称图形得到。如(1)作出函数及的图象;(2)若函数是定义在R上的奇函数,则函数的图象关于____对称 (答:轴)
.
3.由函数的周期性:“函数满足,则是周期为的周期函数”得:
6
①函数满足,则是周期为2的周期函数;
②若恒成立,则;
③若恒成立,则.
如(1) 设是上的奇函数,,当时,,则等于_____(答:);(2)定义在上的偶函数满足,且在上是减函数,若是锐角三角形的两个内角,则的大小关系为_________(答:);(3)已知是偶函数,且=993,=是奇函数,求的值(答:993);(4)设是定义域为R的函数,且,又,则= (答:)
6