• 480.50 KB
  • 2021-05-13 发布

南通市数学学科基地命题高考模拟试卷6含详解

  • 11页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2017年高考模拟试卷(6)‎ 南通市数学学科基地命题 ‎ 第Ⅰ卷(必做题,共160分)‎ 开始 结束 输出S n←1, S←0‎ S < 100‎ n←n + 1‎ S←S + 2n N Y ‎(第5题)‎ 一、填空题:本大题共14小题,每小题5分,共70分 . ‎ ‎1. 设集合A = {1,x },B = {2,3,4},若A∩B ={4},则 x = ▲ .‎ ‎2. 若复数z1=2+i,z1·=5,则z2= ▲ .‎ ‎3. 从数6,7,8,9,10,11六个数中,任取两个不同的数,‎ 则两个数互质的概率是 ▲ .‎ ‎4.已知一组数据x1,x2,…,x100的方差是,则数据 ‎3x1,3x2,…,3x100 的标准差为 ▲ .‎ ‎5.执行右边的程序框图,则输出的S的值为 ▲ .‎ ‎6.设正四棱柱ABCD—A1B1C1D1的底面ABCD是单位正方形,其表面积14,则AA1= ▲ .‎ ‎7.不等式组表示的平面区域的面积为S,则S的值为 ▲ .‎ ‎8.函数y=sin(ωx+)(ω>0)的图象在[0,1]上恰有三个最高点,则ω的取值范围是 ▲ .‎ ‎9.若两个非零向量a,b的夹角为60°,且(a+2b)⊥(a-2b),则向量a+b与a-b的夹角的余弦值是 ▲ .‎ ‎10.已知函数f(x)=ex-1-tx,$x0∈R,f(x0)≤0,则实数t的取值范围 ▲ .‎ ‎11.已知数列{an}是一个等差数列,首项a1>0,公差d≠0,且a2、a5、a9依次成比数列,则 使a1+a2+…+an>100a1的最小正整数k的值是 ▲ .‎ ‎12.抛物线y2=2px(p>0)和双曲线-=1(a>0,b>0)有一个相同的焦点F2(2,0),而双曲线的另一个焦点F1,抛物线和双曲线交于点B、C,若△BCF1是直角三角形,则双曲线的离心率是 ▲ .‎ ‎13.△ABC中,∠A、∠B、∠C的对边分别为a、b、c,若==,则cosAcosBcosC ‎= ▲ .‎ ‎14.已知函数f(x)=,x∈[0,4],则f(x)最大值是 ▲ .‎ 二、解答题:本大题共6小题,共90分.‎ 第 11页,共 11页 ‎15.(本小题满分14分)已知α∈(0,π),且sin(α+)=.‎ ‎(1)求sin(α-)的值;(2)求cos(2α-)的值.‎ ‎16.(本小题满分14分)如图,四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形,M是AB 的中点,O1是A1C1与B1D1的交点.‎ ‎(1)求证:O1M∥平面BB1C1C;‎ A A1‎ B1‎ C D1‎ B C1‎ D M O1‎ ‎(2)若平面AA1C1C⊥平面ABCD,求证:四边形BB1D1D是矩形.‎ B O ‎3N m(N)‎ ‎2N ‎17.(本小题满分14分)如图所示,一根绳穿过两个定滑轮,且两端分别挂有3(N)、2(N)的 重物.现在两个滑轮之间的绳上挂一个重量为m(N)的重物,恰好使系统处于平衡状态.‎ A ‎(1)若∠AOB=120°,求m的值;‎ ‎(2)求m的取值范围.‎ ‎18. 椭圆C:+=1的左、右顶点分别为A、B,F为椭圆C的右焦点,在椭圆C上任取异于A、B的点P,直线PA、PB分别与直线x=3交于点M,N,直线MB与椭圆C交于点Q.‎ 第 11页,共 11页 ‎(1)求·的值;‎ ‎(2)证明:A、Q、N三点共线.‎ ‎19.(本小题满分16分)已知数列满足,.‎ ‎(1)若数列为等差数列,求;‎ ‎(2)设,,不等式成立,求实数a的最小值.‎ ‎20.(本小题满分16分)已知二次函数f(x)=ax2+bx+1,g(x)=a2x2+bx+1.‎ ‎(1)若f(x)≥g(x)对任意实数x恒成立,求实数a的取值范围;‎ ‎(2)若函数f(x)有两个不同零点x1,x2;函数g(x)有两个不同零点x3,x4.‎ ‎ (i)若x3<x1<x4,试比较x2,x3,x4的大小关系;‎ ‎ (ii)若x1=x3<x2,m、n、p∈,,求证m=n=p.‎ 第Ⅱ卷(附加题,共40分)‎ ‎21.[选做题]本题包括A、B、C、D四小题,每小题10分;请选定其中两题,并在相应的答题区域内作答. ‎ A.(选修4-1:几何证明选讲)如图,AB是半圆的直径,C是半圆上一点,D是弧AC的 A E B C D M 中点,DE⊥AB于E,AC与DE交于M,求证:AM=DM.‎ B.(选修4-2:矩阵与变换)已知二阶矩阵M属于特征值3的一个特征向量为a=,并 且矩阵M对应的变换将点(-1,2)变成点(9,15),求出矩阵M..‎ C.(选修4-4:坐标系与参数方程)已知圆C的极坐标方程是,以极点为平面 直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线的参数方程是 第 11页,共 11页 ‎(t是参数).若直线与圆C相切,求实数m的值.‎ D.(选修4-5:不等式选讲)设函数,‎ 若不等式对任意且恒成立,求实数的范围.‎ ‎【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.‎ ‎22.(本小题满分10分) 如图,在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,‎ M D O A B C ‎∠ABC=45°,OA⊥底面ABCD,OA=2,M为OA的中点.‎ ‎(1)求异面直线AB与MD所成角的大小;‎ ‎(2)求平面OAB与平面OCD所成锐二面角的余弦值.‎ ‎23.设a0<a1<a2<…<an(i∈N*,i=1,2,…,n),以[b,c]表示正整数b,c的最小公倍数.‎ 求证:++…+≤1-.‎ ‎2017年高考模拟试卷(6)参考答案 南通市数学学科基地命题 第Ⅰ卷(必做题,共160分)‎ 一、填空题 第 11页,共 11页 ‎1.4.因为A∩B ={4},所以4∈A,故x=4.‎ ‎2.2+i.由z1·=5,得==2-i,所以z1=2+i.‎ ‎3..用枚举法.从6,7,8,9,10,11六个任取两个数有15种不同的取法,其中两个数互质有(6,7),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,11),(9,10),(9,11),(10,11)共11组,故其概率为.‎ ‎4. 3.由x1,x2,…,x100的方差是,则3x1,3x2,…,3x100的方差是18,所标准差为3.‎ ‎5.126.由程序框可知:S=2+22+…+2n=2 n+1-2>100,则最的n值为6,所以输出的S=27-2=126.‎ ‎6. 3.正四棱柱的表面积为14,两个底面积之和为2,故侧面积为12,ÞAA1=3.‎ ‎7. 6.作出如图所示的平面区域,得面积S=×(42-22)=6.‎ ‎8. [π,π).区间[0,1]至少包含2个周期而不到3个周期,故×≤1<×,解之得π≤ω<π.‎ ‎9..由(a+b)⊥(a-2b),得(a+2b)·(a-2b)=0,Þ|a|2-4|b|2=0,则|a|=2|b|,‎ cos〈a+b,a-b〉====.‎ ‎10. (-∞,0)∪[1,+∞).若t<0,令x=,则f()=e1/t-1-1<-1<0;若t=0,f(x)=ex-1>0,不合题意;若t>0,只需f(x)min≤0,求导数,得f ′(x)=ex-1-t,令f ′(x)=0,解得x=lnt+1.当x<lnt+1时,f ′(x)<0,f(x)在区间(-∞,lnt+1)上是减函数;当x>lnt+1时,f ′(x)>0,f(x)在区间(lnt+1,+∞)上是增函数.故f(x)在x=lnt+1处取得最小值f(lnt+1)=t-t(lnt+1)=-tlnt.所以-tlnt≤0,由t>0,得lnt≥0,所以t≥1.‎ ‎11. 34.设数列{an}的公差为d,则a2=a1+d,a5=a1+4d,a9=a1+8d.由a2、a5、a9依次成比数列得 a2 a9=a52,即(a1+d)(a1+8d)=(a1+4d)2,化简上式得 a1d=8d2,又d>0,所以a1=8d.==k+>100,解得kmin=34.‎ ‎12. +1.抛物线方程为y2=8x,且a2+b2=4,设B(x0,y0)、C(x0,-y0) (x0>0,y0>0).则可知∠BF1C为直角,△BCF1是等腰直角三角形,故y0=x0+2,y02=8x0,解得x0=2,y0‎ 第 11页,共 11页 ‎=4,将其代入双曲线得 -=1.再由a2+b2=4解得a=2-2,所以e==+1.‎ ‎13. .由题意可设 tanA=2k,tanB=3k,tanC=6k,k>0,而在△ABC中,tanA+tanB+tanC=tanAtanBtanC,于是k=,从而cosAcosBcosC=××=.‎ ‎14. . 法一 当x=0时,原式值为0;当x≠0时,由=,令t=,由x∈(0,4]得t∈[2+,+∞),f(x)=g(t)==.而t+≥4,当且仅当t=2+时,取得等号,此时x=,所以f(x)≤.即f(x)的最大值为.法二 f(x)==,于是令t=,所求的代数式为.当x=0时,t=0;当x≠0时,有t=≤=,所以t∈[0,],当t=,有最大值,此时x=.‎ 二、解答题 ‎15. 法一:联立Þ4sin2α-(-)sinα-(1+)=0, ‎ 解之得sinα=,和sinα=-,因为α∈(0,π),所以sinα=, ‎ 且α∈(,π),所以cosα=. ‎ ‎(1) sin(α-)=sinαcos-cosαsin=×-×=×=. ‎ ‎(2)sin2α=2sinαcosα=2××=-,cos2α=1-2sin2α=-. ‎ cos(2α-)=cos2αcos-sin2αsin=-. ‎ 法二:因为α∈(0,π),sin(α+)=<, ‎ 所以α+>,所以α+=,所以α=. ‎ ‎(1) sin(α-)=sin(-)=sin=. ‎ ‎(2) cos(2α-)=sin(2×-)=cos=-. ‎ ‎16.(1)证法一:取B1C1的中点为N,连O1N,BN.‎ 因为O1,N分别是△A1B1C1边A1C1与B1C1的中点,‎ 第 11页,共 11页 所以O1N∥A1B1,且O1N=A1B1,‎ 又MB=AB=A1B1,且MB∥A1B1,‎ 所以O1N∥MB,且O1N=MB,所以四边形BMO1N为平行四边形, ‎ 所以O1M∥NB,NBÌ平面BB1C1C,O1MË平面BB1C1C,‎ 所以O1M∥平面BB1C1C. ‎ ‎(2)连AC与BD,因为ABCD是菱形,所以AC⊥BD; ‎ 又因为平面AA1C1C⊥平面ABCD,平面AA1C1C∩平面ABCD=AC,‎ 所以BD⊥平面AA1C1C, ‎ 因为AA1Ì平面AA1C1C,所以BD⊥AA1,BB1∥AA1,BD⊥BB1,‎ 所以平行四边形BB1D1D是矩形. ‎ ‎17. 如图所示,系统受力的水平分量和与竖直分量和都为零,得 ‎ O ‎3N m(N)‎ ‎2N α β ‎(1)因为∠AOB=120°,即α+β=120°,由 ‎(1)2+(2)2得4+9+12cos(α+β)=m2,故m=N. ‎ ‎(2)由得 ‎(3)2+(4)2得4=9-6mcosβ+m2, ‎ 即m2-6mcosβ+5=0.解得m=3cosβ±.因为α是锐角,由(2)得m-3cosβ>0,‎ 即m>3cosβ, ‎ 从而m=3cosβ+,且9cos2β-5>0,又因为β为锐角,得到1>cosβ>.‎ 因此<m<5. ‎ 答:(1)当∠AOB=120°,m的值为N;(2)系统处于平衡状态时,m的取值范围是(,5). ‎ ‎18. (1)记点P(x0,y0).则3x02+4y02=12. ‎ 由lPA:y=(x+2),得M(3,); ‎ 由lPA:y=(x-2)×,得N(3,), ‎ 而F(1,0)得·=(2,)·(2,)=4+=4-=. ‎ 第 11页,共 11页 ‎(2)记点Q为(s,t),直线BQ、AQ分别与直线x=3交于点M′(3,),N′ (3,). ‎ 由题意,点M′即为点M,故=, ‎ 再由·=-=·,得=.‎ 即N′与N点重合.于是A、Q、N三点共线. ‎ ‎19.(1)设数列公差为d,‎ 则对成立, ‎ 所以,故,. ‎ ‎ (2)由,知为等比数列,公比,‎ 所以,故.‎ ‎① 当n为不小于3的奇数时,由,得,‎ 化简得恒成立,所以,解得.‎ ‎② n为不小于2的偶数时,同理有恒成立,‎ 因为,显然恒成立. ‎ 所以.由①②得,故a的最小值为1. ‎ ‎20. (1)因为f(x)≥g(x)对任意实数x恒成立,所以,ax2≥a2x2对任意实数x恒成立,‎ 所以,≤0,解得0≤a≤1.又由题意可得a≠0,‎ 所以实数a的取值范围为0<a≤1. ‎ ‎ (2)(i)因函数g(x)的图象开口向上,且其零点为x3,x4,故g(x)<0Ûx∈(x3,x4).‎ 因x1,x2是f(x)的两个不同零点,故f(x1)=f(x2)=0.‎ 因x3<x1<x4,故g(x1)<0=f(x1),于是<0.‎ 注意到x1≠0,故.‎ 因g(x2)f(x2)=<0,故g(x2)<f(x2)=0,从而x2∈(x3,x4),于是x3<x2<x4.‎ 第 11页,共 11页 ‎(ii)记x1=x3=t,故f(t)=at2+bt+1=0,g(t)=a2t2+bt+1=0,于是(aa2)t2=0.‎ 因a≠0,且t≠0,故a=1.‎ 所以,f(x)=g(x)且其图象开口向上. ‎ 所以,对∈,f(x)递减,递增且<0,g(x)递减且g(x)>0.‎ 若m>n,则<<0,于是>>0,从而g(p)>g(n)>0,故n>p.‎ 同上,当n>p时,可推得p>m. ‎ 所以,p>m>n>p,矛盾.所以,m>n不成立.‎ 同理,n>m亦不成立.所以,m=n.同理,n=p.所以,m=n=p.‎ A E B C D M 第Ⅱ卷(附加题,共40分)‎ ‎21. A. 连AD,因为AB为直径,所以AD⊥BD,‎ 又DE⊥AB,所以∠ABD=∠ADE. ‎ 另一方面,D是弧的中点,所以∠DAC=∠ABD,‎ 所以∠ADE=∠DAC.所以△AMD为等腰三角形,‎ 所以AM=DM. ‎ B. 设,由条件有,,且,‎ ‎,解得,. ‎ C. 由,得,,即圆的方程为,‎ 又由消,得, ‎ 直线与圆相切,,. ‎ D. 设 ‎ 第 11页,共 11页 ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ 综上, ‎ ‎22. 作AP⊥CD于点P,分别以AB、AP、AO所在直线为x、y、z轴建立坐标系,‎ 则A(0,0,0),B(1,0,0),P(0,,0),D(-,,0),O(0,0,2),M(0,0,1).‎ ‎(1)=(1,0,0),=(-,,-1),则cos<,>=-,‎ A B P y C x M D O z 故AB与MD所成角为. ‎ ‎(2)=(0,,-2),=(-,,-2),‎ 设平面OCD法向量n=(x,y,z),则n·=0,n·=0,‎ 即,取z=,则n=(0,4,). ‎ 易得平面OAB的一个法向量为m=(0,1,0),cos<n,m>=, ‎ 故平面OAB与平面OCD所成二面角的平面角余弦值为. ‎ ‎23. 先用数学归纳法证明++…+≤(1-).‎ 当n=1时,≤=(1-)成立. ‎ 假设n=k时命题成立 ‎ 则当n=k+1时++…+≤+(1-), ‎ 因此,只需证辅助命题“+(1-)≤(1-)”.‎ 设(a0,a1)=d,则a0=xd,a1=yd(x,y∈N*,y>x≥1,(x,y)=1)‎ 所以+(1-)-(1-)=+(1-)-(1-)‎ ‎=[1+x(1-)-y(1-)]=[1-(y-x)(1-)-]‎ 第 11页,共 11页 ‎≤[1-1·(1-)-]=0. ‎ 从而+(1-)≤(1-).即n=k+1时命题成立. ‎ 由上可知,对一切n∈N*,命题都成立.‎ 而(1-)≤1-,故++…+≤1-. ‎ 第 11页,共 11页