- 1.45 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2015年普通高等学校招生全国统一考试(新课标1卷)文
一、选择题:每小题5分,共60分
1、已知集合,则集合中的元素个数为
(A) 5 (B)4 (C)3 (D)2
2、已知点,向量,则向量
(A) (B) (C) (D)
3、已知复数满足,则( )
(A) (B) (C) (D)
4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
(A) (B) (C) (D)
5、已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线的焦点重合,是C的准线与E的两个交点,则
(A) (B) (C) (D)
6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )
(A)斛 (B)斛 (C)斛 (D)斛
7、已知是公差为1的等差数列,为的前项和,若,则( )
(A) (B) (C) (D)
8、函数的部分图像如图所示,则的单调递减区间为( )
(A)
(B)
(C)
(D)
9、执行右面的程序框图,如果输入的,则输出的( )
(A) (B) (C)7 (D)8
10、已知函数 ,
且,则
(A)
(B)
(C)
(D)
11、圆柱被一个平面截去一部分后与半球(半径为)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为,则( )
(A)
(B)
(C)
(D)
12、设函数的图像与的图像关于直线对称,且
,则( )
(A) (B) (C) (D)
二、填空题:本大题共4小题,每小题5分
13、数列中为的前n项和,若,则 .
14.已知函数的图像在点的处的切线过点,则 .
15. 若x,y满足约束条件 ,则z=3x+y的最大值为 .
16.已知是双曲线的右焦点,P是C左支上一点, ,当周长最小时,该三角形的面积为 .
三、解答题
17. (本小题满分12分)已知分别是内角的对边,.
(I)若,求
(II)若,且 求的面积.
18. (本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,,
(I)证明:平面平面;
(II)若, 三棱锥的体积为,求该三棱锥的侧面积.
19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
(I)根据散点图判断,与,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(II)根据(I)的判断结果及表中数据,建立y关于x的回归方程;
(III)已知这种产品的年利润z与x,y的关系为 ,根据(II)的结果回答下列问题:
(i)当年宣传费=49时,年销售量及年利润的预报值时多少?
(ii)当年宣传费为何值时,年利润的预报值最大?
20. (本小题满分12分)已知过点且斜率为k的直线l与圆C:交于M,N两点.
(I)求k的取值范围;
(II)若,其中O为坐标原点,求.
21. (本小题满分12分)设函数.
(I)讨论的导函数的零点的个数;
(II)证明:当时.
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
23. (本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系 中,直线,圆,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(I)求的极坐标方程.
(II)若直线的极坐标方程为,设的交点为,求 的面积.
24. (本小题满分10分)选修4-5:不等式选讲
已知函数 .
(I)当 时求不等式 的解集;
(II)若的图像与x轴围成的三角形面积大于6,求a的取值范围.
2015年普通高等学校招生全国统一考试(新课标1卷)文
答案
一、 选择题
(1)D (2)A (3)C (4)C (5)B (6)B
(7)B (8)D (9)C (10)A (11)B (12)C
二、 填空题
(13)6 (14)1 (15)4 (16)
三、 解答题
17、解:
(I)由题设及正弦定理可得=2ac.
又a=b,可得cosB== ……6分
(II)由(I)知=2ac.
因为B=,由勾股定理得.
故,的c=a=.
所以△ABC的面积为1. ……12分
18、解:
(I)因为四边形ABCD为菱形,所以AC⊥BD.
因为BE⊥平面ABCD,所以AC⊥BE,故AC⊥平面BED.
又AC平面AEC,所以平面AEC⊥平面BED. ……5分
(II)设AB=,在菱形ABCD中,又∠ABC= ,可得
AG=GC=,GB=GD=.
因为AE⊥EC,所以在Rt△AEC中,可的EG=.
由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=.
由已知得,三棱锥E-ACD的体积=×AC·GD·BE=.
故=2 ……9分
从而可得AE=EC=ED=.
所以△EAC的面积为3,△EAD的面积与 △ECD的面积均为.
故三棱锥E-ACD的侧面积为3+2. ……12分
19、解:
(I)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费的回归方程式类型.
(II)令,先建立y关于w的线性回归方程式.由于
,
,
所以y关于w的线性回归方程为,因此y关于的回归方程为
(Ⅲ)(i)由(II)知,当=49时,年销售量y的预报值
,
年利润z的预报值
……9分
(ii)根据(II)的结果知,年利润z的预报值
.
所以当,即=46.24时,取得最大值.
故年宣传费为46.24千元时,年利润的预报值最大. ……12分
20、解:
(I)由题设,可知直线的方程为.
因为与C交于两点,所以.
解得 .
所以k的取值范围为. ……5分
(II)设.
将代入方程,整理得
.
所以.
.
由题设可得=12,解得k=1,所以的方程是y=x+1.
故圆心C在上,所以. ……12分
21、解:
(I)的定义域为.
当≤0时,没有零点;
当时,因为单调递增,单调递减,所以在单调递增,又,
当b满足0<b<且b<时,,故当<0时存在唯一零点.
……6分
(II)由(I),可设在的唯一零点为,当时,<0;
当时,>0.
故在单调递减,在单调递增,所以时,取得最小值,最小值为.
由于,所以.
故当时,. ……12分
(II)设CE=1,AE=,由已知得AB=,BE=.由射影定理可得,,
所以,即.可得,所以∠ACB=.
……10分
23、解:
(I)因为,所以的极坐标方程为,
的极坐标方程为. ……5分
(II)将代入,得,解得
.故,即
由于的半径为1,所以的面积为. ……10分
24、解:
(I)当时,化为.
当时,不等式化为,无解;
当时,不等式化为,解得;
当,不等式化为-+2>0,解得1≤<2.
所以的解集为. ……5分
(II)由题设可得,
所以函数的图像与轴围成的三角形的三个丁点分别为
,△ABC的面积为.
由题设得>6,故>2.
所以的取值范围为. ……10分