• 406.50 KB
  • 2021-05-14 发布

三维设计广东文人教版2014高考数学第一轮复习考案 生活中的优化问题举例 文

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第27课 生活中的优化问题举例 ‎ ‎1.(2019江门一模)某产品生产成本与产量()的函数关系式为,销售单价与产量的函数关系式为.‎ ‎(1)产量为何值时,利润最大?‎ ‎(2)产量为何值时,每件产品的平均利润最大?‎ ‎【解析】(1)销售收入. ‎ 利润().‎ ‎∴产量时,利润最大. ‎ ‎(2)每件产品的平均利润. ‎ 令,解得得.‎ ‎∵当时,,单调递增;‎ 当时,,单调递减. ‎ ‎∵,且,‎ ‎∴产量时,每件产品的平均利润最大. ‎ 答:当产量时,每件产品的平均利润最大. ‎ ‎2.(2019福建高考)某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为元/千克时,每日可售出该商品千克。‎ ‎  (1)求的值 ‎  (2)若该商品的成本为元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.‎ ‎【解析】(1)∵时,,‎ 由函数式,‎ 得,∴.‎ ‎(2)由(1)知,‎ ‎∴每日的销售量为,.‎ 每日销售该商品所获得的利润为 于是,当变化时,,的变化情况如下表:‎ ‎(3,4)‎ ‎4‎ ‎(4,6)‎ ‎0‎ 极大值 由上表可以看出,是函数在区间内的极大值点,也是最大值点.‎ ‎∴当时,函数取得最大值.‎ 因此当销售价格为元/千克时,商场每日销售该商品所获得的利润最大.‎ ‎3.(2019西城一模)如图,抛物线与轴交于两点,点在抛物线上(点在第一象限),∥.记,梯形面积为. ‎ ‎(1)求面积以为自变量的函数式;‎ ‎(2)若,其中为常数,且,求的最大值.‎ ‎【解析】(1)依题意,点的横坐标为,点的纵坐标为. ‎ 点的横坐标满足方程,解得,舍去. ‎ 由点在第一象限,得.‎ ‎∴关于的函数式为 ,. ‎ ‎(2)由 及,得.‎ 记,‎ 则. ‎ 令,得. ‎ ‎ ① 若,即时,与的变化情况如下:‎ ‎↗‎ 极大值 ‎↘‎ ‎∴当时,取得最大值,且最大值为. ‎ ‎② 若,即时,恒成立,‎ ‎∴的最大值为. ‎ ‎ 综上,时,的最大值为;‎ 时,的最大值为.‎ ‎4.(2019江苏高考)请你设计一个包装盒,如图所示,ABCD是边长为‎60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,、在上是被切去的等腰直角三角形斜边的两个端点,设cm.‎ ‎(1)若广告商要求包装盒侧面积(cm)最大,试问应取何值?‎ ‎(2)若广告商要求包装盒容积(cm)最大,试问应取何值?并求出此时包装盒的高与底面边长的比值.‎ ‎【解析】(1)根据题意有 ‎∴包装盒侧面积最大.‎ ‎(2)根据题意有,‎ 当时,当时,递增;当时,递减,‎ ‎∴当时,取极大值也是最大值.‎ 此时,包装盒的高与底面边长的比值为.‎ 即包装盒容积(cm)最大, 此时包装盒的高与底面边长的比值为.‎