- 156.50 KB
- 2021-06-09 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
3.2.1 复数代数形式的加、减运算及其几何意义
学习目标:1.掌握复数代数形式的加、减运算法则.(重点)2.了解复数代数形式的加、减运算的几何意义.(易错点)
[自 主 预 习·探 新 知]
1.复数加法与减法的运算法则
(1)设z1=a+bi,z2=c+di是任意两个复数,则
①z1+z2=(a+c)+(b+d)i;
②z1-z2=(a-c)+(b-d)i.
(2)对任意z1,z2,z3∈C,有
①z1+z2=z2+z1;
②(z1+z2)+z3=z1+(z2+z3).
2.复数加减法的几何意义
如图321,设复数z1,z2对应向量分别为1,2,四边形OZ1ZZ2为平行四边形,向量与复数z1+z2对应,向量与复数z1-z2对应.
图321
思考:类比绝对值|x-x0|的几何意义,|z-z0|(z,z0∈C)的几何意义是什么?
[提示] |z-z0|(z,z0∈C)的几何意义是复平面内点Z到点Z0的距离.
[基础自测]
1.思考辨析
(1)复数加法的运算法则类同于实数的加法法则.( )
(2)复数与复数相加减后结果为复数.( )
(3)复数加减法的几何意义类同于向量加减法运算的几何意义.( )
[答案] (1) √ (2)√ (3) √
2.已知复数z1=3+4i,z2=3-4i,则z1+z2= ( )
【导学号:31062210】
A.8i B.6
C.6+8i D.6-8i
B [z1+z2=3+4i+3-4i=(3+3)+(4-4)i=6.]
6
3.复数(1-i)-(2+i)+3i等于( )
A.-1+i B.1-i
C.i D.-i
A [(1-i)-(2+i)+3i=(1-2)+(-i-i+3i)=-1+i.故选A.]
4.已知复数z+3i-3=3-3i,则z=( )
A.0 B.6i
C.6 D.6-6i
D [∵z+3i-3=3-3i,
∴z=(3-3i)-(3i-3)=6-6i.]
5.已知向量1对应的复数为2-3i,向量2对应的复数为3-4i,则向量对应的复数为________.
[解析] =-=(3-4i)-(2-3i)=1-i.
[答案] 1-i
[合 作 探 究·攻 重 难]
复数加减法的运算
(1)计算:(2-3i)+(-4+2i)=________.
(2)已知z1=(3x-4y)+(y-2x)i,z2=(-2x+y)+(x-3y)i,x,y为实数,若z1-z2=5-3i,则|z1+z2|=________.
[解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i=-2-i.
(2)z1-z2=[(3x-4y)+(y-2x)i]-[(-2x+y)+(x-3y)i]=[(3x-4y)-(-2x+y)]+[(y-2x)-(x-3y)]i=(5x-5y)+(-3x+4y)i=5-3i,
所以
解得x=1,y=0,
所以z1=3-2i,z2=-2+i,则z1+z2=1-i,
所以|z1+z2|=.
[答案] (1)-2-i (2)
[规律方法] 复数与复数相加减,相当于多项式加减法的合并同类项,将两个复数的实部与实部相加(减),虚部与虚部相加(减).
[跟踪训练]
1.计算:
(1)(3+5i)+(3-4i)=________.
(2)(-3+2i)-(4-5i)=________.
(3)(5-6i)+(-2-2i)-(3+3i)=________. 【导学号:31062211】
6
[解析] (1)(3+5i)+(3-4i)
=(3+3)+(5-4)i=6+i.
(2)(-3+2i)-(4-5i)=(-3-4)+(2+5)i=-7+7i.
(3)(5-6i)+(-2-2i)-(3+3i)=(5-2-3)+(-6-2-3)i=-11i.
[答案] (1)6+i (2)-7+7i (3)-11i
复数加减运算的几何意义
(1)复数z1,z2满足|z1|=|z2|=1,|z1+z2|=.则|z1-z2|=________.
(2)如图322,平行四边形OABC的顶点O、A、C对应复数分别为0、3+2i、-2+4i,试求
图322
①所表示的复数,所表示的复数;
②对角线所表示的复数;
③对角线所表示的复数及的长度.
[解析] (1)由|z1|=|z2|=1,|z1+z2|=,知z1,z2,z1+z2对应的点是一个边长为1的正方形的三个顶点,所求|z1-z2|是这个正方形的一条对角线长,所以|z1-z2|=.
(2)①=-,∴所表示的复数为-3-2i.
∵=,∴所表示的复数为-3-2i.
②∵=-.
∴所表示的复数为(3+2i)-(-2+4i)=5-2i.
③对角线=+,它所对应的复数z=(3+2i)+(-2+4i)=1+6i,||==.
[规律方法] 1.用复数加、减运算的几何意义解题的技巧
(1)形转化为数:利用几何意义可以把几何图形的变换转化成复数运算去处理.
6
(2)数转化为形:对于一些复数运算也可以给予几何解释,使复数作为工具运用于几何之中.
2.常见结论
在复平面内,z1,z2对应的点分别为A,B,z1+z2对应的点为C,O为坐标原点,则四边形OACB 为平行四边形;若|z1+z2|=|z1-z2|,则四边形OACB为矩形;若|z1|=|z2|,则四边形OACB为菱形;若|z1|=|z2|且|z1+z2|=|z1-z2|,则四边形OACB为正方形.
[跟踪训练]
2.复数z1=1+2i,z2=-2+i,z3=-1-2i,它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数.
【导学号:31062212】
[解] 设复数z1,z2,z3在复平面内所对应的点分别为A,B,C,正方形的第四个顶点D对应的复数为x+yi(x,y∈R),如图.
则=-=(x,y)-(1,2)=(x-1,y-2).
=-=(-1,-2)-(-2,1)=(1,-3).
∵=,∴,解得,故点D对应的复数为2-i.
复数模的最值问题
[探究问题]
1.满足|z|=1的所有复数z对应的点组成什么图形?
提示:满足|z|=1的所有复数z对应的点在以原点为圆心,半径为1的圆上.
2.若|z-1|=|z+1|,则复数z对应的点组成什么图形?
提示:∵|z-1|=|z+1|,∴点Z到(1,0)和(-1,0)的距离相等,即点Z在以(1,0)和(-1,0)为端点的线段的中垂线上.
3.复数|z1-z2|的几何意义是什么?
提示:复数|z1-z2|表示复数z1,z2对应两点Z1与Z2间的距离.
(1)如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值是( )
A.1 B.
C.2 D.
(2)若复数z满足|z++i|≤1,求|z|的最大值和最小值.
(1)A [设复数-i,i,-1-i在复平面内对应的点分别为Z1,Z2,Z3,因为|z+i|+|z-i|=2, |Z1Z2|=2,所以点Z的集合为线段Z1Z2.
问题转化为:动点Z在线段Z1Z2上移动,求|ZZ3
6
|的最小值,因为|Z1Z3|=1.
所以|z+i+1|min=1.]
(2)如图所示, ||==2.
所以|z|max=2+1=3,|z|min=2-1=1.
母题探究:1.(变条件)若本例题(2)条件改为“设复数z满足|z-3-4i|=1”,求|z|的最大值.
[解] 因为|z-3-4i|=1,所以复数z所对应的点在以C(3,4)为圆心,半径为1的圆上,由几何性质得|z|的最大值是+1=6.
2.(变条件)若本例题(2)条件改为已知|z|=1且z∈C,求|z-2-2i|(i为虚数单位)的最小值.
[解] 因为|z|=1且z∈C,作图如图:
所以|z-2-2i|的几何意义为单位圆上的点M到复平面上的点P(2,2)的距离,所以|z-2-2i|的最小值为|OP|-1=2-1.
[规律方法] |z1-z2|表示复平面内z1,z2对应的两点间的距离.利用此性质,可把复数模的问题转化为复平面内两点间的距离问题,从而进行数形结合,把复数问题转化为几何图形问题求解.
[当 堂 达 标·固 双 基]
1. a,b为实数,设z1=2+bi,z2=a+i,当z1+z2=0时,复数a+bi为
( ) 【导学号:31062213】
A.1+i B.2+i
C.3 D.-2-i
D [∵z1=2+bi,z2=a+i,∴z1+z2=2+bi+(a+i)=0,所以a=-2,b=-1,即a+bi=-2-i]
2.已知z1=2+i,z2=1+2i,则复数z=z2-z1对应的点位于( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
B [z=z2-z1=(1+2i)-(2+i)=-1+i,实部小于零,虚部大于零,故位于第二象限.]
3.计算|(3-i)+(-1+2i)-(-1-3i)|=________.
[解析] |(3-i)+(-1+2i)-(-1-3i)|=|(2+i)-(-1-3i)|=|3+4i|==5.
[答案] 5
4.已知复数z1=(a2-2)+(a-4)i,z2=a-(a2-2)i(a∈R),且z1-z2为纯虚数,则
6
a=________.
[解析] z1-z2=(a2-a-2)+(a-4+a2-2)i(a∈R)为纯虚数,∴
解得a=-1.
[答案] -1
5.在复平面内,复数-3-i与5+i对应的向量分别是与,其中O是原点,求向量+,对应的复数及A,B两点间的距离.
【导学号:31062214】
[解] 向量+对应的复数为(-3-i)+(5+i)=2.
∵=-,∴向量对应的复数为
(-3-i)-(5+i)=-8-2i.
∴A,B两点间的距离为
|-8-2i|==2.
6
相关文档
- 高中数学选修2-1课件第3章-3_2-第32021-06-0961页
- 【新教材】2020-2021学年高中人教A2021-06-096页
- 2020高中数学 第3章 数系的扩充与2021-06-095页
- 2020_2021学年新教材高中数学第六2021-06-0934页
- 2018-2019学年河南省信阳高中、商2021-06-0910页
- 2020年高中数学第一章解三角形12021-06-095页
- 高中数学3_1_2两角和与差的正弦导2021-06-096页
- 2020高中数学第三章指数函数和对数2021-06-095页
- 高中数学第3章不等式课时分层作业12021-06-094页
- 高中数学必修4同步练习:两角差的余2021-06-095页