• 52.88 KB
  • 2021-06-10 发布

高考数学专题复习练习第3讲 随机事件的概率

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第3讲 随机事件的概率 一、选择题 ‎1.把12人平均分成两组,再从每组里任意指定正、副组长各一人,其中甲被指定为正组长的概率是(  )‎ A. B. C. D. 解析 甲所在的小组有6人,则甲被指定正组长的概率为.‎ 答案 B ‎2.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为、、,且各道工序互不影响,则加工出来的零件的次品率为(  )‎ A. B. C. D.‎ 解析 加工出来的零件的次品的对立事件为零件是正品,由对立事件公式得 加工出来的零件的次品率.‎ 答案 C ‎3.盒中装有10个乒乓球,其中6个新球,4个旧球.不放回地依次取出2个球使用,在第一次取出新球的条件下,第二次也取到新球的概率为 (  ).‎ A. B. C. D. 解析 第一次结果一定,盒中仅有9个乒乓球,5个新球4个旧球,所以第二次也取到新球的概率为.‎ 答案 C ‎4.把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出现正面”为事件B,则P(B|A)等于 (  ).‎ A. B. C. D. 解析 法一 P(B|A)===.‎ 法二 A包括的基本事件为{正,正},{正,反},AB包括的基本事件为{正,正},因此P(B|A)=.‎ 答案 A ‎5.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是(  ).‎ A. B. C. D. 解析 采用枚举法:从1,2,3,4这四个数中一次随机取两个数,基本事件为:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,符合“一个数是另一个数的两倍”的基本事件有{1,2},{2,4},共2个,所以所求的概率为.‎ 答案 B ‎6.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是 (  ).‎ A. B. C. D. 解析 从装有3个红球、2个白球的袋中任取3个球通过列举知共有10个基本事件;所取的3个球中至少有1个白球的反面为“3个球均为红色”,有1个基本事件,所以所取的3个球中至少有1个白球的概率是1-=.‎ 答案 D 二、填空题 ‎7.对飞机连续射击两次,每次发射一枚炮弹.设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机},其中彼此互斥的事件是________,互为对立事件的是________.‎ 解析 设I为对飞机连续射击两次所发生的所有情况,因为A∩B=∅,A∩C=∅,B∩C=∅,B∩D=∅.故A与B,A与C,B与C,B与D为彼此互斥事件,而B∩D=∅,B∪D=I,故B与D互为对立事件.‎ 答案 A与B、A与C、B与C、B与D B与D ‎8.在△ABC中,角A、B、C所对的边分别是a、b、c,A=30°,若将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数分别为a、b,则满足条件的三角形有两个解的概率是_______.‎ 解析 要使△ABC有两个解,需满足的条件是因为A=30°,所以满足此条件的a,b的值有b=3,a=2;b=4,a=3;b=5,a=3;b=5,a=4;b=6,a=4;b=6,a=5,共6种情况,所以满足条件的 三角形有两个解的概率是=.‎ 答案 ‎9.甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为________.‎ 解析 由对立事件的性质知在同一时刻至少有一颗卫星预报准确的概率为1-(1-0.8)(1-0.75)=0.95.‎ 答案 0.95‎ ‎10.在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次再次取到不合格品的概率为________.‎ 解析 设A={第一次取到不合格品},B={第二次取到不合格品},则P(AB)=,所以P(B|A)=== 答案  三、解答题 ‎11.甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.‎ ‎(1)求再赛2局结束这次比赛的概率;‎ ‎(2)求甲获得这次比赛胜利的概率.‎ 解 记Ai表示事件:第i局甲获胜,i=3,4,5,Bj表示事件:第j局乙获胜,j=3,4.‎ ‎(1)记A表示事件:再赛2局结束比赛.‎ A=A‎3A4+B3B4.‎ 由于各局比赛结果相互独立,故 P(A)=P(A‎3A4+B3B4)=P(A‎3A4)+P(B3B4)=P(A3)P(A4)+P(B3)P(B4)‎ ‎=0.6×0.6+0.4×0.4=0.52.‎ ‎(2)记B表示事件:甲获得这次比赛的胜利.‎ 因前两局中,甲、乙各胜一局,故甲获得这次比赛的胜利当且仅当在后面的比赛中,甲先胜2局,从而 B=A‎3A4+B‎3A‎4A5+A3B‎4A5,‎ 由于各局比赛结果相互独立,故 P(B)=P(A‎3A4)+P(B‎3A‎4A5)+P(A3B‎4A5)‎ ‎=P(A3)P(A4)+P(B3)P(A4)P(A5)+P(A3)P(B4)P(A5)‎ ‎=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648.‎ ‎12.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4,且只乘一种交通工具去开会.‎ ‎(1)求他乘火车或乘飞机去开会的概率;‎ ‎(2)求他不乘轮船去开会的概率;‎ ‎(3)如果他乘某种交通工具去开会的概率为0.5,请问他有可能是乘何种交通工具去开会的?‎ 解 (1)记“他乘火车去开会”为事件A1,“他乘轮船去开会”为事件A2,“他乘汽车去开会”为事件A3,“他乘飞机去开会”为事件A4,这四个事件不可能同时发生,故它们是彼此互斥的.故P(A1+A4)=P(A1)+P(A4)=0.3+0.4=0.7.‎ ‎(2)设他不乘轮船去开会的概率为P,‎ 则P=1-P(A2)=1-0.2=0.8.‎ ‎(3)由于0.3+0.2=0.5,0.1+0.4=0.5,1-(0.3+0.2)=0.5,1-(0.1+0.4)=0.5,‎ 故他有可能乘火车或轮船去开会,也有可能乘汽车或飞机去开会.‎ ‎13.黄种人群中各种血型的人所占的比如下表所示:‎ 血型 A B AB O 该血型的人所占比/%‎ ‎28‎ ‎29‎ ‎8‎ ‎35‎ 已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问:‎ ‎(1)任找一个人,其血可以输给小明的概率是多少?‎ ‎(2)任找一个人,其血不能输给小明的概率是多少?‎ 解 (1)对任一人,其血型为A,B,AB,O型血的事件分别记为A′,B′,C′,D′,它们是彼此互斥的.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.‎ 因为B,O型血可以输给B型血的人,故“可以输给B型血的人”为事件B′+D′.根据互斥事件的概率加法公式,有P(B′+D′)=P(B′)+P(D′)=0.29+0.35=0.64.‎ ‎(2)法一 由于A,AB型血不能输给B型血的人,故“不能输给B型血的人”为事件A′+C′,且P(A′+C′)=P(A′)+P(C′)=0.28+0.08=0.36.‎ 法二 因为事件“其血可以输给B型血的人”与事件“其血不能输给B型血的人”是对立事件,故由对立事件的概率公式,有P(])=1-P(B′+D′)=1-0.64=0.36.‎ 即:任找一人,其血可以输给小明的概率为0.64,其血不能输给小明的概率为0.36.‎ ‎14.如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:‎ 时间(分钟)‎ ‎10~20‎ ‎20~30‎ ‎30~40‎ ‎40~50‎ ‎50~60‎ L1的频率 ‎0.1‎ ‎0.2‎ ‎0.3‎ ‎0.2‎ ‎0.2‎ L2的频率 ‎0‎ ‎0.1‎ ‎0.4‎ ‎0.4‎ ‎0.1‎ 现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.‎ ‎(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?‎ ‎(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望.‎ 解 (1)Ai表示事件“甲选择路径Li时,40分钟内赶到火车站”,Bi表示事件“乙选择路径Li时,50分钟内赶到火车站”,i=1,2.‎ 用频率估计相应的概率可得 P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,‎ ‎∵P(A1)>P(A2),∴甲应选择L1;‎ P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,‎ ‎∵P(B2)>P(B1),∴乙应选择L2.‎ ‎(2)A,B分别表示针对(1)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(1)知P(A)=0.6,P(B)=0.9,又由题意知,A,B独立,‎ ‎∴P(X=0)=P()=P()P()=0.4×0.1=0.04,‎ P(X=1)=P(B+A)=P()P(B)+P(A)P()‎ ‎=0.4×0.9+0.6×0.1=0.42,‎ P(X=2)=P(AB)=P(A)P(B)=0.6×0.9=0.54.‎ ‎∴X的分布列为 X ‎0‎ ‎1‎ ‎2‎ P ‎0.04‎ ‎0.42‎ ‎0.54‎ ‎∴E(X)=0×0.04+1×0.42+2×0.54=1.5.‎