- 505.00 KB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2.2.3 直线与平面平行的性质
整体设计
教学分析
上节课已学习了直线与平面平行的判定定理,这节课将通过例题让学生体会应用线面平行的性质定理的难度,进而明确告诉学生:线面平行的性质定理是高考考查的重点,也是最难应用的两个定理之一.本节重点是直线与平面平行的性质定理的应用.
三维目标
1.探究直线与平面平行的性质定理.
2.体会直线与平面平行的性质定理的应用.
3.通过线线平行与线面平行转化,培养学生的学习兴趣.
重点难点
教学重点:直线与平面平行的性质定理.
教学难点:直线与平面平行的性质定理的应用.
课时安排
1课时
教学过程
复习
回忆直线与平面平行的判定定理:
(1)文字语言:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.
(2)符号语言为:
(3)图形语言为:如图1.
图1
导入新课
思路1.(情境导入)
教室内日光灯管所在的直线与地面平行,是不是地面内的所有直线都与日光灯管所在的直线平行?
思路2.(事例导入)
观察长方体(图2),可以发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的侧面C′D′DC所在平面平行,你能在侧面C′D′DC所在平面内作一条直线与A′B平行吗?
图2
推进新课
新知探究
提出问题
①回忆空间两直线的位置关系.
②若一条直线与一个平面平行,探究这条直线与平面内直线的位置关系.
③用三种语言描述直线与平面平行的性质定理.
④试证明直线与平面平行的性质定理.
⑤应用线面平行的性质定理的关键是什么?
⑥总结应用线面平行性质定理的要诀.
活动:问题①引导学生回忆两直线的位置关系.
问题②借助模型锻炼学生的空间想象能力.
问题③引导学生进行语言转换.
问题④引导学生用排除法.
问题⑤引导学生找出应用的难点.
问题⑥鼓励学生总结,教师归纳.
讨论结果:①空间两条直线的位置关系:相交、平行、异面.
②若一条直线与一个平面平行,这条直线与平面内直线的位置关系不可能是相交(可用反证法证明),所以,该直线与平面内直线的位置关系还有两种,即平行或异面.
怎样在平面内作一条直线与该直线平行呢(排除异面的情况)?经过这条直线的平面和这个平面相交,那么这条直线和交线平行.
③直线与平面平行的性质定理用文字语言表示为:
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.
这个定理用符号语言可表示为:
这个定理用图形语言可表示为:如图3.
图3
④已知a∥α,aβ,α∩β=b.求证:a∥b.
证明:
⑤应用线面平行的性质定理的关键是:过这条直线作一个平面.
⑥应用线面平行性质定理的要诀:“见到线面平行,先过这条直线作一个平面找交线”.
应用示例
思路1
例1 如图4所示的一块木料中,棱BC平行于面A′C′.
图4
(1)要经过面A′C′内的一点P和棱BC将木料锯开,应怎样画线?
(2)所画的线与面AC是什么位置关系?
活动:先让学生思考、讨论再回答,然后教师加以引导.
分析:经过木料表面A′C′内的一点P和棱BC将木料锯开,实际上是经过BC及BC外一点P作截面,也就是找出平面与平面的交线.我们可以由线面平行的性质定理和公理4、公理2作出.
解:(1)如图5,在平面A′C′内,过点P作直线EF,使EF∥B′C′,
图5
并分别交棱A′B′、C′D′于点E、F.连接BE、CF.
则EF、BE、CF就是应画的线.
(2)因为棱BC平行于面A′C′,平面BC′与平面A′C′交于B′C′,所以BC∥B′C′.
由(1)知,EF∥B′C′,
所以EF∥BC.因此
BE、CF显然都与平面AC相交.
变式训练
如图6,a∥α,A是α另一侧的点,B、C、D∈a,线段AB、AC、AD交α于E、F、G点,若BD=4,CF=4,AF=5,求EG.
图6
解:Aa,∴A、a确定一个平面,设为β.
∵B∈a,∴B∈β.
又A∈β,∴ABβ.
同理ACβ,ADβ.
∵点A与直线a在α的异侧,
∴β与α相交.
∴面ABD与面α相交,交线为EG.
∵BD∥α,BD面BAD,面BAD∩α=EG,
∴BD∥EG.
∴△AEG∽△ABD.
∴.(相似三角形对应线段成比例)
∴EG=.
点评:见到线面平行,先过这条直线作一个平面找交线,直线与交线平行,如果再需要过已知点,这个平面是确定的.
例2 已知平面外的两条平行直线中的一条平行于这个平面,求证另一条也平行于这个平面.如图7.
图7
已知直线a,b,平面α,且a∥b,a∥α,a,b都在平面α外.
求证:b∥α.
证明:过a作平面β,使它与平面α相交,交线为c.
∵a∥α,aβ,α∩β=c,
∴a∥c.
∵a∥b,∴b∥c.
∵cα,bα,∴b∥α.
变式训练
如图8,E、H分别是空间四边形ABCD的边AB、AD的中点,平面α过EH分别交BC、CD于F、G.求证:EH∥FG.
图8
证明:连接EH.
∵E、H分别是AB、AD的中点,
∴EH∥BD.
又BD面BCD,EH面BCD,
∴EH∥面BCD.
又EHα、α∩面BCD=FG,
∴EH∥FG.
点评:见到线面平行,先过这条直线作一个平面找交线,则直线与交线平行.
思路2
例1 求证:如果两个相交平面分别经过两条平行直线中的一条,那么它们的交线和这条直线平行.如图9.
图9
已知a∥b,aα,bβ,α∩β=c.
求证:c∥a∥b.
证明:
变式训练
求证:一条直线与两个相交平面都平行,则这条直线与这两个相交平面的交线平行.
图10
已知:如图10,a∥α,a∥β,α∩β=b,
求证:a∥b.
证明:如图10,过a作平面γ、δ,使得γ∩α=c,δ∩β=d,那么有
点评:本题证明过程,实际上就是不断交替使用线面平行的判定定理、性质定理及公理4的过程.这是证明线线平行的一种典型的思路.
例2 如图11,平行四边形EFGH的四个顶点分别在空间四边形ABCD的边AB、BC、CD、DA上,求证:BD∥面EFGH,AC∥面EFGH.
图11
证明:∵EFGH是平行四边形
变式训练
如图12,平面EFGH分别平行于CD、AB,E、F、G、H分别在BD、BC、AC、AD上,且CD=a,AB=b,CD⊥AB.
图12
(1)求证:EFGH是矩形;
(2)设DE=m,EB=n,求矩形EFGH的面积.
(1)证明:∵CD∥平面EFGH,而平面EFGH∩平面BCD=EF,
∴CD∥EF.同理HG∥CD,∴EF∥HG.
同理HE∥GF,∴四边形EFGH为平行四边形.
由CD∥EF,HE∥AB,∴∠HEF为CD和AB所成的角.
又∵CD⊥AB,∴HE⊥EF.
∴四边形EFGH为矩形.
(2)解:由(1)可知在△BCD中EF∥CD,DE=m,EB=n,
∴.又CD=a,∴EF=.
由HE∥AB,∴.
又∵AB=b,∴HE=.
又∵四边形EFGH为矩形,
∴S矩形EFGH=HE·EF=.
点评:线面平行问题是平行问题的重点,有着广泛应用.
知能训练
求证:经过两条异面直线中的一条有且只有一个平面和另一条直线平行.
已知:a、b是异面直线.
求证:过b有且只有一个平面与a平行.
证明:(1)存在性.如图13,
图13
在直线b上任取一点A,显然Aa.
过A与a作平面β,
在平面β内过点A作直线a′∥a,
则a′与b是相交直线,它们确定一个平面,设为α,
∵bα,a与b异面,∴aα.
又∵a∥a′,a′α,∴a∥α.
∴过b有一个平面α与a平行.
(2)唯一性.
假设平面γ是过b且与a平行的另一个平面,
则bγ.∵A∈b,∴A∈γ.
又∵A∈β,∴γ与β相交,设交线为a″,则A∈a″.
∵a∥γ,aβ,γ∩β=a″,∴a∥a″.又a∥a′,∴a′∥a″.
这与a′∩a″=A矛盾.
∴假设错误,故过b且与a平行的平面只有一个.
综上所述,过b有且只有一个平面与a平行.
变式训练
已知:a∥α,A∈α,A∈b,且b∥a.求证:bα.
证明:假设bα,如图14,
图14
设经过点A和直线a的平面为β,α∩β=b′, ∵a∥α,∴a∥b′(线面平行则线线平行).
又∵a∥b,∴b∥b′,这与b∩b′=A矛盾.
∴假设错误.故bα.
拓展提升
已知:a,b为异面直线,aα,bβ,a∥β,b∥α,求证:α∥β.
证明:如图15,在b上任取一点P,由点P和直线a确定的平面γ与平面β交于直线c,则c与b相交于点P.
图15
变式训练
已知AB、CD为异面线段,E、F分别为AC、BD中点,过E、F作平面α∥AB.
(1)求证:CD∥α;
(2)若AB=4,EF=,CD=2,求AB与CD所成角的大小.
(1)证明:如图16,连接AD交α于G,连接GF,
图16
∵AB∥α,面ADB∩α=GFAB∥GF.
又∵F为BD中点,
∴G为AD中点.
又∵AC、AD相交,确定的平面ACD∩α=EG,E为AC中点,G为AD中点,∴EG∥CD.
(2)解:由(1)证明可知:
∵AB=4,GF=2,CD=2,∴EG=1,EF=.
在△EGF中,由勾股定理,得∠EGF=90°,即AB与CD所成角的大小为90°.
课堂小结
知识总结:利用线面平行的性质定理将直线与平面平行转化为直线与直线平行.
方法总结:应用直线与平面平行的性质定理需要过已知直线作一个平面,是最难应用的定理之一;应让学生熟记:“过直线作平面,把线面平行转化为线线平行”.
作业
课本习题2.2 A组5、6.
设计感想
线面关系是线线关系和面面关系的桥梁和纽带,线面平行的判定是高考考查的重点.本节的难点是应用线面平行的性质定理把线面平行转化为线线平行,本节在选题时始终围绕这个中心展开,针对性强,因此这节课目的突出,是一个精彩课例.另外,本节总结了应用线面平行性质定理的口诀,对学生的学习一定有很大帮助.
相关文档
- 高中数学必修2教案:2_2_1 直线与平2021-06-102页
- 高中数学必修2教案:第1章 空间几何2021-06-1019页
- 高中数学必修2教案:直线的两点式方2021-06-103页
- 高中数学必修2教案:直线的一般式方2021-06-103页
- 高中数学必修2教案:直线方程的几种2021-06-102页
- 高中数学必修2教案:平面与平面垂直2021-06-101页
- 高中数学必修2教案:圆的一般方程22021-06-102页
- 高中数学必修2教案:观察、理解不共2021-06-101页
- 高中数学必修2教案:两条直线的平行2021-06-103页
- 高中数学必修2教案:棱柱、直棱柱和2021-06-101页