• 311.00 KB
  • 2021-06-15 发布

高中数学必修1教案2_3幂函数

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2. 3 幂函数教案 ‎【教学目标】‎ ‎1.掌握幂函数的形式特征,掌握具体幂函数的图象和性质。‎ ‎2.能应用幂函数的图象和性质解决有关简单问题。‎ ‎【教学重难点】‎ 教学重点:从具体函数归纳认识幂函数的一些性质并简单应用。‎ 教学难点:引导学生概括出幂函数的性质。‎ ‎【教学过程】‎ ‎ (一)预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。‎ ‎(二)情景导入、展示目标。‎ 问题:分析以下五个函数,它们有什么共同特征?‎ ‎(1)边长为的正方形面积,是的函数;‎ ‎(2)面积为的正方形边长,是的函数;‎ ‎(3)边长为的立方体体积,是的函数;‎ ‎(4)某人内骑车行进了1,则他骑车的平均速度,这里是的函数;‎ ‎(5)购买每本1元的练习本本,则需支付元,这里是的函数. ‎ 已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来。‎ 设计意图:步步导入,吸引学新知:一般地,形如的函数称为幂函数,其中为常数.‎ 试试:判断下列函数哪些是幂函数.‎ ‎①;②;③;④.‎ 探究任务二:幂函数的图象与性质 问题:作出下列函数的图象:(1);(2);(3);(4);(5). ‎ 从图象分析出幂函数所具有的性质.‎ 观察图象,总结填写下表:‎ 定义域 值域 奇偶性 单调性 定点 ‎(三)合作探究、精讲点拨。‎ 例1讨论在的单调性.‎ 解析:证明函数的单调性一般用定义法,有时利用复合函数的单调性。‎ 证明:任取,且,则 ‎,‎ 因为,,所以,‎ 所以,即在为增函数。‎ 点评:证明函数的单调性要严格按照步骤和格式写,利用作商法比较大小时注意函数符号要一致。‎ 变式训练1:讨论的单调性.‎ ‎(学生板演,小组讨论)‎ 例2比较大小:‎ ‎(1)与; (2)与;(3)与.‎ 分析:利用考察其相对应的幂函数和指数函数单调性来比较大小。‎ 变式训练2‎ 练习1. 讨论函数的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性.‎ 练习2. 比大小:‎ ‎(1)与; (2)与;‎ ‎(3)与 ‎(四)小结:今天的学习内容和方法有哪些?你有哪些收获和经验?幂函数的图象和形状就可能发生很大的变化。我们今天主要研究了幂函数在第一象限的性质。本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。‎ ‎【板书设计】‎ 一、幂函数概念及其性质 ‎1. 概念 ‎2. 性质 二、例题 例1‎ 变式1‎ 例2‎ 变式2‎ ‎ 【作业布置】课本79页2‎ ‎ ‎ ‎2.3 幂函数学案 课前预习学案 一、预习目标 预习“五个具体的幂函数”,初步认识幂函数的概念和性质。‎ 二、预习内容 ‎1.写出下列函数的定义域,并画出函数图象、指出函数的单调性和奇偶性: ‎ ‎ ‎ ‎2.下列四个命题中正确的为 ( ) ‎ A.幂函数的图象都经过 ‎ B.当n<0时,幂函数 的值在定义域内随x的值增大而减小 C.幂函数的图象不可能出现在第四象限内 D.当n=0时,幂函数图象是一条直线 ‎3.下列各式中正确的是 ( )‎ ‎ A.-2.4 <(-4.2) B.()<() C.(-π) >(-2 ) D.(-π) <5 ‎ ‎4.幂函数的图象过点(2, 4 ), 则它的单调递增区间是。‎ ‎ A.(0, +∞) B.[0, +∞) C.(-∞, 0) D.(-∞, +∞)‎ ‎ 5.已知幂函数 的图象与x轴、y轴都无公共点,且关于y轴对称,则m=__ ___‎ 三、提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点 疑惑内容 课内探究学案 一、学习目标 ‎1.掌握幂函数的形式特征,掌握具体幂函数的图象和性质。‎ ‎2.能应用幂函数的图象和性质解决有关简单问题。‎ 学习重难点:能应用幂函数的图象和性质解决有关简单问题,概括出幂函数的性质。‎ 二、学习过程 探究任务一:幂函数的概念 问题:分析以下五个函数,它们有什么共同特征?‎ ‎(1)边长为的正方形面积,是的函数;‎ ‎(2)面积为的正方形边长,是的函数;‎ ‎(3)边长为的立方体体积,是的函数;‎ ‎(4)某人内骑车行进了1,则他骑车的平均速度,这里是的函数;‎ ‎(5)购买每本1元的练习本本,则需支付元,这里是的函数. ‎ 新知:一般地,形如的函数称为幂函数,其中为常数.‎ 试试:判断下列函数哪些是幂函数.‎ ‎①;②;③;④.‎ 探究任务二:幂函数的图象与性质 问题:作出下列函数的图象:(1);(2);(3);(4);(5). ‎ 从图象分析出幂函数所具有的性质.‎ 观察图象,总结填写下表:‎ 定义域 ‎ ‎ 值域 奇偶性 单调性 定点 三、 典型例题 例1讨论在的单调性.‎ 变式训练一:讨论的单调性.‎ 例2比较大小:‎ ‎(1)与; (2)与;‎ ‎(3)与.‎ 变式训练二 练1. 讨论函数的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性.‎ ‎ ‎ 练2. 比大小:‎ ‎(1)与; (2)与;‎ ‎(3)与.‎ 四、反思总结 幂函数的图象,在第 象限内,直线 的右侧,图象由下至上,指数由小到大. 轴和直线之间,图象由上至下,指数. ‎ 五、当堂达标 ‎ ‎1. 若幂函数在上是增函数,则( ).‎ A.>0 B.<0 ‎ C.=0 D.不能确定 ‎2. 函数的图象是( ).‎ ‎ A. B. C. D.‎ ‎3. 若,那么下列不等式成立的是( ).‎ A.