• 37.00 KB
  • 2021-06-16 发布

高考数学专题复习教案: 函数y=Asin(ωx+φ)的图象及应用

  • 2页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
函数y=Asin(ωx+φ)的图象及应用 主标题:函数y=Asin(ωx+φ)的图象及应用 副标题:为学生详细的分析函数y=Asin(ωx+φ)的图象及应用的高考考点、命题方向以及规律总结。‎ 关键词:函数y=Asin(ωx+φ,图象与性质 难度:2‎ 重要程度:4‎ 考点剖析:‎ ‎1.了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图像,了解参数A,ω,φ对函数图像变化的影响.‎ ‎2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.‎ 命题方向:‎ ‎1.函数y=Asin(ωx+φ)的图像与性质的综合问题是每年高考的热点内容,题型既有选择题、填空题,也有解答题,难度适中,为中档题.‎ ‎2.高考对y=Asin(ωx+φ)的图像与性质的综合应用问题的考查主要有以下几个命题角度:‎ ‎(1)图像变换与函数的性质的综合问题;‎ ‎(2)图像变换与函数解析式的综合问题;‎ ‎(3)函数图像与性质的综合问题.‎ 规律总结:‎ 1个区别——两种图像变换的区别 ‎ 由y=sin x的图像变换到y=Asin(ωx+φ)的图像,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位长度;而先周期变换(伸缩变换)再相位变换,平移的量是(ω>0)个单位长度.原因在于相位变换和周期变换都是针对x而言,即x本身加减多少值,而不是依赖于ωx加减多少值.‎ 2个注意点——作函数y=Asin(ωx+φ)的图像应注意的 问题 ‎ (1)首先要确定函数的定义域;‎ ‎(2)对于具有周期性的函数,应先求出周期,作图像时只要作出一个周期的图像,就可根据周期性作出整个函数的图像.‎ 3种方法——由函数图像求解析式的方法 ‎ (1)如果从图像可确定振幅和周期,则可直接确定函数表达式y=Asin(ωx+φ)中的参数A和ω,再选取“第一零点”(即五点作图法中的第一个点)的数据代入“ωx+φ=0”(要注意正确判断哪一点是“第一零点”)求得φ.‎ ‎(2)通过若干特殊点代入函数式,可以求得相关待定系数A,ω,φ.依据是五点法.‎ ‎(3)运用逆向思维的方法,根据图像变换可以确定相关的参数.‎ 知 识 梳 理 ‎1.用五点法画y=Asin(ωx+φ)一个周期内的简图 用五点法画y=Asin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示:‎ x ‎- ‎-+ - ωx+φ ‎0‎ π ‎2π y=Asin(ωx+φ)‎ ‎0‎ A ‎0‎ ‎-A ‎0‎ ‎2.函数y=sin x的图像变换得到y=Asin(ωx+φ)(A>0,ω>0)的图像的步骤 ‎   法一           法二 步骤1横坐标变为,原来的倍得到y=Asin(ωx+φ)的图像步骤4横坐标变为,原来的倍步骤2向左(右)平移,个单位长度步骤3 ‎3.函数y=Asin(ωx+φ)(A>0,ω>0,x∈[0,+∞))的物理意义 ‎(1)振幅为A.‎ ‎(2)周期T=.‎ ‎(3)频率f==.‎ ‎(4)相位是ωx+φ.‎ ‎(5)初相是φ.‎