• 25.00 KB
  • 2021-06-16 发布

高考数学专题复习教案: 椭圆中的最值问题

  • 1页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
椭圆中的最值问题 主标题: ‎ 副标题:为学生详细的分析椭圆中的最值问题的高考考点、命题方向以及规律总结。‎ 关键词:椭圆,椭圆中的最值问题 难度:5‎ 重要程度:4‎ 考点剖析:1.理解椭圆中的最值问题;‎ ‎2.会处理有关椭圆中的最值问题,‎ 命题方向:‎ 椭圆中的最值问题以及与向量、不等式、方程结合的问题常以解答题的形式出现,具有一定的综合性和难度.主要体现了转化思想及数形结合的应用,涉及到的知识有椭圆定义、标准方程、参数方程、三角函数、二次函数、不等式等内容。能够考查学生的分析能力、理解能力、知识迁移能力、解决问题的能力等等。‎ 规律总结:‎ 圆锥曲线最值问题具有综合性强、涉及知识面广而且常含有变量的一类难题,也是教学中的一个难点。要解决这类问题往往利用函数与方程思想、数形结合思想、转化与化归等数学思想方法,将它转化为解不等式或求函数值域,以及利用函数单调性、各种平面几何中最值的思想来解决。‎ 知识梳理 (1) 设椭圆的左右焦点分别为F1、F2, P(x0,y0)为椭圆内一点,M(x,y)为椭圆上任意一点,则︱MP︱+︱MF2︱的最大值为‎2a+︱PF1︱,最小值为‎2a–︱PF1︱。‎ (2) 设椭圆的左右焦点分别为F1、F2, P(x0,y0)为椭圆外一点,M(x,y)为椭圆上任意一点,则︱MP︱+︱MF2︱的最大值为‎2a+︱PF1︱,最小值为PF2。‎ (3) 椭圆上的点M(x,y)到定点A(m,0)或B(0,n)距离的最值问题,可以用两点间距离公式表示︱MA︱或︱MB︱,通过动点在椭圆上消去y或x,转化为二次函数求最值,注意自变量的取值范围。‎ (4) 若椭圆上的点到非坐标轴上的定点的距离求最值时,可通过椭圆的参数方程,统一变量转化为三角函数求最值。‎ (5) 椭圆上的点到定直线l距离的最值问题,可转化为与l平行的直线m与椭圆相切的问题,利用判别式求出直线m方程,再利用平行线间的距离公式求出最值。‎