• 271.50 KB
  • 2021-06-16 发布

2021届高考数学一轮复习第一章集合与常用逻辑用语第2节命题及其关系充分条件与必要条件教学案含解析新人教A版

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第2节 命题及其关系、充分条件与必要条件 考试要求 1.理解命题的概念,了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;2.理解充分条件、必要条件与充要条件的含义.‎ 知 识 梳 理 ‎1.命题 用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.‎ ‎2.四种命题及其相互关系 ‎(1)四种命题间的相互关系 ‎(2)四种命题的真假关系 ‎①两个命题互为逆否命题,它们具有相同的真假性.‎ ‎②两个命题为互逆命题或互否命题时,它们的真假性没有关系.‎ ‎3.充分条件、必要条件与充要条件的概念 若p⇒q,则p是q的充分条件,q是p的必要条件 p是q的充分不必要条件 p⇒q且q p p是q的必要不充分条件 p q且q⇒p p是q的充要条件 p⇔q p是q的既不充分也不必要条件 p q且q p ‎[常用结论与微点提醒]‎ ‎1.否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.‎ ‎2.区别A是B的充分不必要条件(A⇒B且B A),与A的充分不必要条件是B(B⇒A且A B)两者的不同.‎ ‎3.A是B的充分不必要条件⇔綈B是綈A的充分不必要条件.‎ 诊 断 自 测 ‎1.判断下列结论正误(在括号内打“√”或“×”)‎ ‎(1)“x2+2x-3<0”是命题.(  )‎ ‎(2)当q是p的必要条件时,p是q的充分条件.(  )‎ ‎(3)“若p不成立,则q不成立”等价于“若q成立,则p成立”.(  )‎ ‎(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.(  )‎ 解析 (1)错误.该语句不能判断真假,故该说法是错误的.‎ 答案 (1)× (2)√ (3)√ (4)√‎ ‎2.(新教材必修第一册P34复习参考题T5改编)设a,b∈R且ab≠0,则ab>1是a>的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 若“ab>1”,当a=-2,b=-1时,不能得到“a>”,‎ 若“a>”,例如当a=1,b=-1时,不能得到“ab>1”,‎ 故“ab>1”是“a>”的既不充分也不必要条件.‎ 答案 D ‎3.(老教材选修2-1P2例1改编)下面有4个命题:①集合N中最小的数是1;②若-a不属于N,则a属于N;③若a∈N,b∈N,则a+b的最小值为2;④x2+1=2x的解可表示为{1,1}.其中真命题的个数为________.‎ 解析 ①为假命题,集合N中最小的数是0;②为假命题,如a=不满足;③为假命题,如a=0,b=1,a+b=1,比2小;④为假命题,所给集合中的元素不满足互异性.‎ 答案 0‎ ‎4.(2017·北京卷)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为________.‎ 解析 a>b>c,取a=-2,b=-4,c=-5,‎ 则a+b=-6a是q:2a},∴a≤2.‎ 答案 (-∞,2]‎ ‎6.(2020·青岛二中检测)直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的充要条件是________.‎ 解析 直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点等价于<,解得-11,则a2>1”的否命题是“若a>1,则a2≤1”‎ B.“若am24x0成立 D.“若sin α≠,则α≠”是真命题 ‎(2)(2018·北京卷)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是________.‎ 解析 (1)对于选项A,“若a>1,则a2>1”的否命题是“若a≤1,则a2≤1”,A错;‎ 对于B项,若“am23x,C错;‎ 对于D项,原命题的逆否命题为“若α=,则sin α=”是真命题,故原命题是真命题.‎ ‎(2)根据函数单调性的概念,只要找到一个定义域为[0,2]的不单调函数,满足在定义域内有唯一的最小值点,且f(x)min=f(0).‎ 答案 (1)D (2)f(x)=sin x,x∈[0,2](答案不唯一 ,再如f(x)=)‎ 规律方法 1.写一个命题的其他三种命题时,需注意:‎ ‎(1)对于不是“若p,则q”形式的命题,需先改写;‎ ‎(2)若命题有大前提,写其他三种命题时需保留大前提.‎ ‎2.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.‎ ‎3.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易时,可间接判断.‎ ‎【训练1】 (1)(2020·石家庄模拟)下列说法中正确的是(  )‎ A.若函数f(x)为奇函数,则f(0)=0‎ B.若数列{an}为常数列,则{an}既是等差数列也是等比数列 C.在△ABC中,A>B是sin A>sin B的充要条件 D.命题“若0,则x>a;命题q:若m≤a-2,则mB⇔a>b⇔sin A>sin B.‎ D错,若{an}递减,则an+1a,则x>0,它是真命题时,a≥0.命题q的逆否命题是:若m≥sin x,则m>a-2恒成立,它是真命题时a-2<-1,解得a<1.综上所述,实数a的取值范围是[0,1).‎ 答案 (1)C (2)[0,1)‎ 考点二 充分条件与必要条件的判定 ‎【例2】 (1)(2019·浙江卷)若a>0,b>0,则“a+b≤4”是“ab≤4”的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 ‎(2)已知条件p:x>1或x<-3,条件q:5x-6>x2,则綈p是綈q的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 (1)当a>0,b>0时,得4≥a+b≥2,即ab≤4,充分性成立;当a=4,b=1时,满足ab≤4,但a+b=5>4,不满足a+b≤4,必要性不成立,故“a+b≤4”是“ab≤4”的充分不必要条件.‎ ‎(2)由5x-6>x2,得2b,a,b,c∈R,则下列命题为真命题的是(  )‎ A.ac2>bc2 B.>1‎ C.a-c>b-c D.a2>b2‎ 解析 对于选项A,a>b,若c=0,则ac2=bc2,故A错;对于选项B,a>b,若a>0,b<0,则<1,故B错;对于选项C,a>b,则a-c>b-c,故C正确;对于选项D,a>b,若a,b均小于0,则a2b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有(  )‎ A.0个 B.1个 C.2个 D.4个 解析 原命题:若c=0,则不成立,由等价命题同真同假知其逆否命题也为假;逆命题为:设a,b,c∈R,若“ac2>bc2,则a>b”.由ac2>bc2知c2>0,∴由不等式的基本性质得a>b,∴逆命题为真,由等价命题同真同假知否命题也为真,∴真命题共有2个.‎ 答案 C ‎6.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是 綈p,则a的取值范围是(  )‎ A.[1,+∞) B.(-∞,1]‎ C.[-1,+∞) D.(-∞,-3]‎ 解析 由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≥1.‎ 答案 A ‎7.(2018·浙江卷)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 若m⊄α,n⊂α,m∥n,由线面平行的判定定理知m∥α.若m∥α,m⊄α,n⊂α,不一定推出m∥n,直线m与n可能异面,故“m∥n”是“m∥α”的充分不必要条件.‎ 答案 A ‎8.下列结论错误的是(  )‎ A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”‎ B.“x=4”是“x2-3x-4=0”的充分条件 C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题 D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”‎ 解析 C项命题的逆命题为“若方程x2+x-m=0有实根,则m>0”.若方程有实根,则Δ=1+4m≥0,‎ 即m≥-,不能推出m>0.所以不是真命题.‎ 答案 C 二、填空题 ‎9.(2017·北京卷改编)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的________条件.‎ 解析 存在负数λ,使得m=λn,则m·n=λn·n=λ|n|2<0;反之m·n=|m||n|cos〈m,n〉<0⇒cos〈m,n〉<0⇔〈m,n〉∈,当〈m,n〉∈时,m,n不共线.故“存在负数λ,使得m=λn”是“m·n<0”的充分不必要条件.‎ 答案 充分不必要 ‎10.有下列几个命题:‎ ‎①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-22S5⇔d>0,所以“d>0”是“S4+S6>2S5”的充要条件.‎ 答案 C ‎14.(2020·合肥模拟)已知偶函数f(x)在[0,+∞)上单调递增,则对实数a,b,“a>|b|”是“f(a)>f(b)”的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 因为f(x)是偶函数,所以f(x)=f(|x|).‎ 又y=f(x)在[0,+∞)上单调递增,‎ 若a>|b|,则f(a)>f(|b|)=f(b),即充分性成立;‎ 若f(a)>f(b),则等价为f(|a|)>f(|b|),即|a|>|b|,‎ 即a>|b|或a<-|b|,即必要性不成立,‎ 则“a>|b|”是“f(a)>f(b)”的充分不必要条件.‎ 答案 A ‎15.已知p:实数m满足3a0),q:方程+=1表示焦点在y轴上的椭圆,若p是q的充分条件,则a的取值范围是________________.‎ 解析 由2-m>m-1>0,得1b,则<”为假命题的一组a,b的值依次为________.‎ 解析 若a>b,则<为真命题,则-=<0,∵a>b,∴b-a<0,则ab>0.故当a>0,b<0时,均能说明“若a>b,则<”为假命题.‎ 答案 a=1,b=-1(答案不唯一,只需a>0,b<0)‎