- 73.00 KB
- 2021-06-19 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第5讲 对数与对数函数
一、选择题
1.(2015·四川卷)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的( )
A.充分必要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
解析 因为y=log2x在(0,+∞)上单调递增,所以当a>b>1时,有log2a>log2b>log21=0;
当log2a>log2b>0=log21时,有a>b>1.
答案 A
2.(2017·上饶模拟)已知a=log23+log2,b=log29-log2,c=log32,则a,b,c的大小关系是( )
A.a=bc C.ab>c
解析 因为a=log23+log2=log23=log23>1,b=log29-log2=log23=a,c=log320,且a≠1)的图像如图所示,则下列函数图像正确的是( )
解析 由题意y=logax(a>0,且a≠1)的图像过(3,1)点,可解得a=3.选项A中,y=3-x=,显然图像错误;选项B中,y=x3,由幂函数图像可知正确;选项C中,y=(-x)3=-x3,显然与所画图像不符;选项D中,y=log3(-x)的图像与y=log3x的图像关于y轴对称,显然不符.故选B.
答案 B
5
4.已知函数f(x)=则f(f(1))+f的值是( )
A.5 B.3 C.-1 D.
解析 由题意可知f(1)=log21=0,
f(f(1))=f(0)=30+1=2,
f=3-log3+1=3log32+1=2+1=3,
所以f(f(1))+f=5.
答案 A
5.(2016·浙江卷)已知a,b>0且a≠1,b≠1,若logab>1,则( )
A.(a-1)(b-1)<0 B.(a-1)(a-b)>0
C.(b-1)(b-a)<0 D.(b-1)(b-a)>0
解析 ∵a>0,b>0且a≠1,b≠1.
由logab>1得loga>0.
∴a>1,且>1或0a>1或00.
答案 D
二、填空题
6.设f(x)=log是奇函数,则使f(x)<0的x的取值范围是________.
解析 由f(x)是奇函数可得a=-1,
∴f(x)=lg,定义域为(-1,1).
由f(x)<0,可得0<<1,∴-10,且a≠1)的值域是[4,+∞),则实数a的取值范围是________.
解析 当x≤2时,f(x)≥4;又函数f(x)的值域为[4,+∞),所以解1<a≤2,所以实数a的取值范围为(1,2].
答案 (1,2]
三、解答题
9.设f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.
(1)求a的值及f(x)的定义域;
(2)求f(x)在区间上的最大值.
解 (1)∵f(1)=2,∴loga4=2(a>0,a≠1),
∴a=2.
由得-1<x<3,
∴函数f(x)的定义域为(-1,3).
(2)f(x)=log2(1+x)+log2(3-x)
=log2(1+x)(3-x)=log2[-(x-1)2+4],
∴当x∈(-1,1]时,f(x)是增函数;
当x∈(1,3)时,f(x)是减函数,
故函数f(x)在上的最大值是f(1)=log24=2.
10.(2016·榆林月考)已知函数f(x)是定义在R上的偶函数,且f(0)=0,当x>0时,f(x)=logx.
(1)求函数f(x)的解析式;
(2)解不等式f(x2-1)>-2.
解 (1)当x<0时,-x>0,则f(-x)=log(-x).
因为函数f(x)是偶函数,所以f(-x)=f(x)=log(-x),
所以函数f(x)的解析式为
f(x)=
5
(2)因为f(4)=log4=-2,f(x)是偶函数,
所以不等式f(x2-1)>-2转化为f(|x2-1|)>f(4).
又因为函数f(x)在(0,+∞)上是减函数,
所以|x2-1|<4,解得-b>c B.c>b>a
C.c>a>b D.a>c>b
解析 函数y=f(x)是定义在R上的偶函数,当x∈(-∞,0]时,f(x)为减函数,
∴f(x)在[0,+∞)为增函数,
∵b=f(log4)=f(-2)=f(2),1<20.3<2b>a.
答案 B
12.已知函数f(x)=ln,若f(a)+f(b)=0,且0<a<b<1,则ab的取值范围是________.
解析 由题意可知ln+ln=0,
即ln=0,从而×=1,化简得a+b=1,故ab=a(1-a)=-a2+a=-+,
又0<a<b<1,
∴0<a<,故0<-+<.
答案
13.(2016·浙江卷)已知a>b>1,若logab+logba=,ab=ba,则a=________,b=________.
解析 ∵logab+logba=logab+=,
∴logab=2或.∵a>b>1,∴logab0,且a≠1)的最大值是1,最小值是-,求a的值.
解 由题意知f(x)=(logax+1)(logax+2)
=(logx+3logax+2)
=-.
当f(x)取最小值-时,logax=-.
又∵x∈[2,8],∴a∈(0,1).
∵f(x)是关于logax的二次函数,
∴函数f(x)的最大值必在x=2或x=8时取得.
若-=1,则a=2-,
此时f(x)取得最小值时,x=(2-)-=∉[2,8],舍去.
若-=1,则a=,
此时f(x)取得最小值时,x==2∈[2,8],
符合题意,∴a=.
5
相关文档
- 2020高中数学奇偶性的应用2021-06-195页
- 高中数学选修2-2课时练习第四章 3_2021-06-1914页
- 2020-2021学年高中数学新教材人教B2021-06-1913页
- 高中数学:4_1《圆的方程》测试 (新人2021-06-193页
- 2020高中数学 第三章二倍角的正弦2021-06-198页
- 人教版高中数学选修4-5练习:第二讲22021-06-195页
- 浙江专版2019-2020学年高中数学课2021-06-197页
- 高中数学选修2-2教案第一章 42021-06-1911页
- 高中数学椭圆 同步测试2021-06-196页
- 河南省八市重点高中2019-2020学年2021-06-1918页