• 97.61 KB
  • 2021-06-19 发布

人教A数学必修一方程的根与函数的零点

  • 4页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎3.1.1‎方程的根与函数的零点 使用说明:‎ ‎   “自主学习”15分钟完成,出现问题,小组内部讨论完成,展示个人学习成果,教师对重点概念点评。‎ ‎    “合作探究”8分钟完成,并进行小组学习成果展示,小组都督互评,教师重点点评。‎ ‎    “巩固练习”7分钟完成,组长负责,小组内部点评。‎ ‎    “个人收获”5分钟完成,根据个人学习和小组讨论情况,对掌握的知识点、方法进行总结,并找出理解不到位的问题。‎ ‎    最后5分钟,教师针对本节课中出现的重点问题做总结性点评。‎ 通过本节学习应达到如下目标:‎ ‎ 1、理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.‎ ‎ 2、通过对零点定义的探究掌握零点存在性的判定方法.‎ ‎ 3、在函数与方程的联系中体验数学中的转化思想的意义和价值.‎ 学习重点:零点的概念及存在性的判定.‎ 学习难点:零点的确定.‎ 学习过程 (一) 自主探究 1、 观察下面几个一元二次方程及其相应的二次函数如:‎ 方程与函数 方程与函数 方程与函数 ‎(在下面坐标系中分别做出上述二次函数的图象,并解出的方程根)试说明方程的根与图象与x轴交点的关系。‎ ‎ (1) (2) (3)‎ ‎ ‎ ‎ 2、利用上述关系,试说明一般的一元二次方程的根及其对应的 二次函数的图象有怎样的关系?‎ ‎ ‎ ‎ 3、利用以上两个问题的的发现,试总结函数零点的定义,并说明函数的零点,方程实数根,函数的图象与轴交点的横坐标的关系?‎ ‎(二)合作探讨 ‎1、(Ⅰ)观察二次函数的图象 (见图1) ,完成下面各小题。‎ ‎1) 在区间上有零点______; _______,_______,‎ ‎·_____0(<或>).‎ ‎2) 在区间上有零点______; ·____0(<或>).‎ ‎(Ⅱ)观察下面函数的图象(如图),完成下面各小题。‎ ‎1)在区间上______(有/无)零点; ·_____0(<或>). ‎ ‎2) 在区间上______(有/无)零点;‎ ‎·_____0(<或>).‎ ‎3) 区间上______(有/无)零点;‎ ‎·_____0(<或>).‎ ‎4) 区间上______(有/无)零点;有   个零点;‎ ‎·_____0(<或>).‎ 由以上几步探索,可以得出什么样的结论?‎ ‎2、(根的存在性定理):‎ ‎ ‎ ‎ ‎ 在根的存在性定理中只须加入什么条件,零点的个数就是唯一的?‎ ‎ ‎ ‎ 3、求函数的零点个数.(可以借助计算机或计算器来画函数的图象)‎ ‎(三)巩固练习 ‎1.利用函数图象判断下列方程有没有根,有几个根:‎ ‎(1); (2);‎ ‎(3); (4).‎ ‎2.利用函数的图象,指出下列函数零点所在的大致区间:‎ ‎(1); (2);‎ ‎(3); (4).‎ ‎(四) 个人收获与问题:‎ ‎ 知识:‎ ‎ ‎ ‎ 方法:‎ 问题:‎ ‎(五) 能力拓展:‎ 设函数。‎ 1) 利用计算机探求=2和=3时函数零点的个数。‎ 2) 当时,函数的零点是怎样分布的。‎