- 587.09 KB
- 2021-06-21 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2013年普通高等学校招生全国统一考试(江西卷)
理科数学
第一卷
一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M={1,2,zi},i,为虚数单位,N={3,4},则复数z=
A.-2i B.2i C.-4i D.4i
2.函数y=ln(1-x)的定义域为
A.(0,1) B.[0,1) C.(0,1] D.[0,1]
3.等比数列x,3x+3,6x+6,…..的第四项等于
A.-24 B.0 C.12 D.24
4.总体有编号为01,02,…,19,20的20个个体组成。利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为
7816 6572 0802 6314 0702 4369 9728 0198
3204 9234 4935 8200 3623 4869 6938 7481
A.08 B.07 C.02 D.01
5.(x2-)5展开式中的常数项为
A.80 B.-80 C.40 D.-40
6.若则的大小关系为
A. B.
C. D.
7.阅读如下程序框图,如果输出,那么在空白矩形框中应填入的语句为
A. B. C. D.
8.如图,正方体的底面与正四面体的底面在同一平面上,且,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为,那么
A.8 B.9 C.10 D.11
9.过点引直线与曲线相交于A,B两点,O为坐标原点,当AOB的面积取最大值时,直线的斜率等于
A. B. C. D.
9
10.如图,半径为1的半圆O与等边三角形ABC夹在两平行线,之间//,与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点,设弧的长为,,若从平行移动到,则函数的图像大致是
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分,共20分。
11.函数的最小正周期为为 。
12.设,为单位向量。且,的夹角为,若,,则向量在方向上的射影为
13.设函数在内可导,且,则
14.抛物线的焦点为F,其准线与双曲线相交于两点,若为等边三角形,则
三、选做题:请在下列两题中任选一题作答,若两题都做,则按第一题评阅计分,本题共5分
15.(1)、(坐标系与参数方程选做题)设曲线的参数方程为(为参数),若以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,则曲线的极坐标方程为
(2)、(不等式选做题)在实数范围内,不等式的解集为
四.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。
16.(本小题满分12分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(conA-sinA)cosB=0.
(1) 求角B的大小;若a+c=1,求b的取值范围
17. (本小题满分12分)正项数列{an}的前项和{an}满足:
(1)求数列{an}的通项公式an;
(2)令,数列{bn}的前项和为。证明:对于任意的,都有
9
18.(本小题满分12分)
小波以游戏方式决定参加学校合唱团还是参加学校排球队。游戏规则为:以O为起点,再从(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为.若就参加学校合唱团,否则就参加学校排球队。
(1) 求小波参加学校合唱团的概率;
(2) 求的分布列和数学期望。
19(本小题满分12分)
如图,四棱锥中,,,连接并延长交于.
(1) 求证:;
(2) 求平面 与平面的夹角的余弦值.
9
20. (本小题满分13分) 如图,椭圆经过点离心率,直线的方程为.
(1) 求椭圆的方程;
(2) 是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为问:是否存在常数,使得?若存在求的值;若不存在,说明理由.
21. (本小题满分14分)
已知函数,为常数且.
(1) 证明:函数的图像关于直线对称;
(2) 若满足,但,则称为函数的二阶周期点,如果有两个二阶周期点试确定的取值范围;
(3) 对于(2)中的和, 设x3为函数f(f(x))的最大值点,A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0),记△ABC的面积为S(a),讨论S(a)的单调性.
9
2013年普通高等学校招生全国统一考试(江西卷)
理科数学参考答案
一、选择题:本大题共10小题,每小题5分,共50分。
1.C 2.D 3.A 4.D 5.C 6.B 7.C 8.A 9.B 10.D
二、填空题:本大题共4小题,每小题5分,共20分。
11. 12. 13. 2 14. 6
三、选做题:本大题5分。
15. (1) (2)
四、解答题:本大题共6小题,共75分。
16. (本小题满分12分)
解:(1)由已知得
即有
因为,所以,又,所以,
又,所以。
(2)由余弦定理,有。
因为,有。
又,于是有,即有。
17.(本小题满分12分)
(1)解:由,得。
由于是正项数列,所以。
于是时,。
综上,数列的通项。
(2)证明:由于。
则。
。
18.(本小题满分12分)
解:(1)从8个点中任意取两点为向量终点的不同取法共有种,时,两向量夹角为直角共有8种情形;所以小波参加学校合唱团的概率为。
(2)两向量数量积的所有可能取值为时,有两种情形;时,有8种情形;时,有10种情形。所以的分布列为:
9
。
19.(本大题满分12分)
解:(1)在中,因为是的中点,所以,
故,
因为,所以,
从而有,
故,又因为所以∥。
又平面,
所以故平面。
(1) 以点为坐标原点建立如图所示的坐标系,则,
(2)
,故
设平面的法向量,则 ,
解得,即。
设平面的法向量,则,解得,
9
即。从而平面与平面的夹角的余弦值为。
20.(本大题满分13分)
解:(1)由在椭圆上得, ①
依题设知,则 ②
②代入①解得。
故椭圆的方程为。
(2)方法一:由题意可设的斜率为,
则直线的方程为 ③
代入椭圆方程并整理,得,
设,则有
④
在方程③中令得,的坐标为。
从而。
注意到共线,则有,即有。
所以
⑤
④代入⑤得,
又,所以。故存在常数符合题意。
方法二:设,则直线的方程为:,
令,求得,
从而直线的斜率为,
9
联立 ,得,
则直线的斜率为:,直线的斜率为:,
所以,
故存在常数符合题意。
21.(本大题满分14分)
(1)证明:因为,有,
所以函数的图像关于直线对称。
(2)解:当时,有
所以只有一个解,又,故0不是二阶周期点。
当时,有
所以有解集,又当时,,故中的所有点都不是二阶周期点。
当时,有
所以有四个解,又,
,故只有是的二阶周期点。综上所述,所求 的取值范围为。
(3)由(2)得,
9
因为为函数的最大值点,所以或。
当时,。求导得:,
所以当时,单调递增,当时单调递减;
当时,,求导得:,
因,从而有,
所以当时单调递增。
9
相关文档
- 高中数学讲义微专题17 函数的极值2021-06-218页
- 广东省珠海市2020届高三上学期期末2021-06-214页
- 数学卷·2018届河北省保定市高碑店2021-06-2116页
- 高中数学讲义微专题13 利用函数解2021-06-2113页
- 2020高中数学 第一章 导数及其应用2021-06-215页
- 2021届浙江新高考数学一轮复习教师2021-06-2116页
- 高一数学必修4模块训练8答案2021-06-214页
- 2019年高考真题——数学(浙江卷) 解2021-06-2124页
- 高中数学:第二章《圆锥曲线与方程》2021-06-218页
- 数学(文)卷·2018届湖北省荆州中学高2021-06-217页