- 116.50 KB
- 2021-06-23 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第十章 第2节
1.抛掷两枚质地均匀的骰子,向上的点数之差的绝对值为3的概率是( )
A. B.
C. D.
解析:B [抛掷两枚质地均匀的骰子,向上的点数之差的绝对值为3的情况有:1,4;4,1;2,5;5,2;3,6;6,3共6种,而抛掷两枚质地均匀的骰子的情况有36种,所以所求概率p==,故选B.]
2.(2020·陕西质检)从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )
A. B.
C. D.
解析:A [从1,2,3,4中任取两个不同的数字构成一个两位数,有12,13,14,21,23,24,31,32,34,41,42,43,共12种结果,其中大于30的两位数有31,32,34,41,42,43,共6个,所以这两位数大于30的概率p==.故选A.]
3.从集合{1,2,3,4}中随机抽取一个数a,从集合{1,2,3}中随机抽取一个数b,则向量m=(a,b)与向量n=(2,1)共线的概率为( )
A. B.
C. D.
解析:A [由题意可知m=(a,b)有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),共12个,∵m=(a,b)与向量n=(2,1)共线,∴a-2b=0,即a=2b,有(2,1),(4,2),共2个,故所求概率为.]
4.有两个质地均匀、大小相同的正四面体玩具,每个玩具的各面上分别写有数字1,2,3,4.把两个玩具各抛掷一次,斜向上的面上的数字之和能被5整除的概率为( )
A. B.
C. D.
解析:B [把“两个玩具斜向上的面的数字之和能被5整除”记为事件A,每个玩具斜向上的面的数字之和均有4种情况,两个玩具各抛掷一次,斜向上的面的数字之和共有16种情况,其中能被5整除的有4种情况:(2,3)、(3,2)、(1,4)、(4,1).故P(A)==.]
5.某商场举行有奖促销活动,抽奖规则如下:箱子中有编号为1,2,3,4,5的五个形状、大小完全相同的小球,从中任取两球,若摸出的两球号码的乘积为奇数则中奖;否则不中奖则中奖的概率为( )
A. B.
C. D.
解析:C [由题得试验的所有基本事件有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,摸出的两球号码的乘积为奇数的基本事件有(1,3),(1,5),(3,5),共3个,由古典概型的概率公式得p=.故选C.]
6.甲、乙两名同学各自等可能地从政治、历史、地理3门课程中选择2门作为考试科目,则他们选择的课程完全相同的概率为 __________ .
解析:甲和乙各有三种选择方法,故基本事件的总数有3×3=9种,其中选课完全相同的有3种,故概率为=.
答案:
7.(2020·四川冲刺演练)现有大小形状完全相同的4个小球,其中红球有2个,白球与蓝球各1个,将这4个小球任意排成一排,则中间2个小球不都是红球的概率为 __________ .
解析:4个小球排成一排的所有情况为:红红白蓝,红红蓝白,红白红蓝,红白蓝红,红蓝红白,红蓝白红,白蓝红红,白红蓝红,白红红蓝,蓝白红红,蓝红白红,蓝红红白,共有12种,其中中间2个小球都是红球的有2种.∴中间2个小球不都是红球的概率为p=1-=.
答案:
8.从两名男生和两名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为 ________ .
解析:两名男生记为A1,A2,两名女生记为B1,B2,任意选择两人在星期六、星期日参加某公益活动,共有A1A2,A1B1,A1B2,A2B1,A2B2,B1B2,A2A1,B1A1,B2A1,B1A2,B2A2,B2B1,12种情况,而星期六安排一名男生、星期日安排一名女生共有A1B1,A1B2,A2B1,A2B2,4种情况,则所求的概率p==.
答案:
9.某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:
一年级
二年级
三年级
男同学
A
B
C
女同学
X
Y
Z
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).
(1)用表中字母列举出所有可能的结果;
(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.
解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.
(2)选出的2人来自在不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.
因此,事件M发生的概率P(M)==.
10.(2020·成都一诊)某部门为了解该企业在生产过程中的用水量情况,对日用水量做了记录,得到了大量该企业的日用水量的统计数据,从这些统计数据中随机抽取12天的日用水量的数据作为样本,得到的统计结果如下表:
日用水量
(单位:吨)
[70,80)
[80,90)
[90,100]
频数
3
6
m
频率
n
0.5
p
(1)求m,n,p的值;
(2)已知样本中日用水量在[80,90)内的这6个数据分别为83,85,86,87,88,
89.从这6个数据中随机抽取2个,求抽取的2个数据中至少有一个大于86的概率.
解:(1)∵3+6+m=12,∴m=3,
∴n==,p===.
∴m=3,n=p=.
(2)从这6个数据中随机抽取2个数据的情况有:{83,85},{83,86},{83,87},{83,88},{83,89},{85,86},{85,87},{85,88},{85,89},{86,87},{86,88},{86,89},{87,88},{87,89},{88,89},共15种.
其中2个数据都小于或等于86的情况有{83,85},{83,86},{85,86},共3种.
故抽取的2个数据中至少有一个大于86的概率
P=1-=.
相关文档
- 浙江专用2020版高考数学一轮复习(练2021-06-233页
- 专题13 概率与统计(专题)-2017年高考2021-06-2311页
- 专题09 推理 概率 统计 相关性的判2021-06-239页
- 2016届高考数学(理)5年高考真题备考2021-06-233页
- 高中数学选修2-3教学课件:条件概率2021-06-2328页
- 【三维设计】2017届高三数学(理)二轮2021-06-235页
- 2021届新高考版高考数学一轮复习精2021-06-2313页
- 2020年高中数学第三章概率32021-06-235页
- 2021高考数学人教版一轮复习多维层2021-06-237页
- 专题68 事件的关系与概率计算秘诀-2021-06-2310页