- 105.50 KB
- 2021-06-23 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时分层作业(二十三) 用二分法求方程的近似解
(建议用时:40分钟)
[学业达标练]
一、选择题
1.下面关于二分法的叙述中,正确的是( )
【导学号:37102363】
A.用二分法可求所有函数零点的近似值
B.用二分法求方程的近似解时,可以精确到小数点后的任一位
C.二分法无规律可循,无法在计算机上完成
D.只能用二分法求函数的零点
B [用二分法求函数零点的近似值,需要有端点函数值符号相反的区间,故选项A错误;二分法是一种程序化的运算,故可以在计算机上完成,故选项C错误;求函数零点的方法还有方程法、函数图象法等,故D错误,故选B.]
2.函数f(x)的图象是连续不断的曲线,在用二分法求方程f(x)=0在(1,2)内近似解的过程可得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的解所在区间为( )
A.(1.25,1.5) B.(1,1.25)
C.(1.5,2) D.不能确定
A [由于f(1.25)·f(1.5)<0,则方程的解所在区间为(1.25,1.5).]
3.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下:
【导学号:37102364】
f(1)=-2
f(1.5)=0.625
f(1.25)=-0.984
f(1.375)=-0.260
f(1.437 5)=0.162
f(1.406 25)=-0.054
要么方程x3+x2-2x-2=0的一个近似根(精确度为0.05)可以是( )
A.1.25 B.1.375
C.1.42 D.1.5
C [由表格可得,函数f(x)=x3+x2-2x-2的零点在(1.437 5,1.406 25)之间.结合选项可知,方程x3+x2-2x-2=0的一个近似根(精确度为0.05)可以是1.42.故选C.]
4.用二分法求函数f(x)=2x+3x-7在区间[0,4]上的零点近似值,取区间中点2,则下一个存在零点的区间为( )
A.(0,1) B.(0,2)
C.(2,3) D.(2,4)
B [因为f(0)=20+0-7=-6<0,
f(4)=24+12-7>0,
f(2)=22+6-7>0,所以f(0)f(2)<0,所以零点在区间(0,2).]
5.在用“二分法”求函数f(x
- 4 -
)零点近似值时,第一次所取的区间是[-2,4],则第三次所取的区间可能是( )
【导学号:37102365】
A.[1,4] B.[-2,1]
C. D.
D [∵第一次所取的区间是[-2,4],∴第二次所取的区间可能为[-2,1],[1,4],∴第三次所取的区间可能为,,,.]
二、填空题
6.已知函数f(x)=x3-2x-2,f(1)·f(2)<0,用二分法逐次计算时,若x0是[1,2]的中点,则f(x0)=________.
-1.625 [由题意,x0=1.5,f(x0)=f(1.5)=-1.625.]
7.在用二分法求方程f(x)=0在[0,1]上的近似解时,经计算,f(0.625)<0,f(0.75)>0,f(0.687 5)<0,即得出方程的一个近似解为________.(精确度为0.1)
【导学号:37102366】
0.687 5 [∵f(0.625)<0,f(0.75)>0,f(0.687 5)<0,
∴方程的解在(0.687 5,0.75)上,而|0.75-0.687 5|<0.1.
∴方程的一个近似解为0.687 5.]
8.已知图象连续不断的函数y=f(x)在区间(0,0.1)上有唯一零点,如果用二分法求这个零点(精确度为0.01)的近似值,则应将区间(0,0.1)等分的次数至少为________.
4 [设等分的最少次数为n,则由<0.01,得2n>10,∴n的最小值为4.]
三、解答题
9.用二分法求函数f(x)=x3-3的一个正零点.(精确度为0.01)
【导学号:37102367】
[解] 由于f(1)=-2<0,f(2)=5>0,因此可取区间(1,2)作为计算的初始区间,用二分法逐次计算,列表如下:
区间
中点的值
中点函数近似值
(1,2)
1.5
0.375
(1,1.5)
1.25
-1.046 9
(1.25,1.5)
1.375
-0.400 4
(1.375,1.5)
1.437 5
-0.029 5
(1.437 5,1.5)
1.468 75
0.168 4
- 4 -
(1.437 5,1.468 75)
1.453 125
0.068 4
(1.437 5,1.453 125)
1.445 312 5
0.019 2
(1.437 5,1.445 312 5)
∵|1.445 312 5-1.437 5|=0.007 812 5<0.01,∴x=1.445 312 5可作为函数的一个正零点.
10.用二分法求方程x2-5=0的一个近似正解.(精确度为0.1)
[解] 令f(x)=x2-5,因为f(2.2)=-0.16<0,f(2.4)=0.76>0,所以f(2.2)·f(2.4)<0,
即这个函数在区间(2.2,2.4)内有零点x0,
取区间(2.2,2.4)的中点x1=2.3,f(2.3)=0.29,因为f(2.2)·f(2.3)<0,所以x0∈(2.2,2.3),
再取区间(2.2,2.3)的中点x2=2.25,f(2.25)=0.062 5,因为f(2.2)·f(2.25)<0,
所以x0∈(2.2,2.25),由于|2.25-2.2|=0.05<0.1,
所以原方程的近似正解可取为2.25.
[冲A挑战练]
1.下列函数中不能用二分法求零点近似值的是( )
【导学号:37102368】
A.f(x)=3x-1 B.f(x)=x3
C.f(x)=|x| D.f(x)=ln x
C [对于选项C而言,令|x|=0,得x=0,即函数f(x)=|x|存在零点,但当x>0时,f(x)>0;当x<0时,f(x)>0,所以f(x)=|x|的函数值非负,即函数f(x)=|x|有零点,但零点两侧函数值同号,所以不能用二分法求零点的近似值.]
2.在用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为( )
A.0.68 B.0.72
C.0.7 D.0.6
C [已知f(0.64)<0,f(0.72)>0,则函数f(x)的零点的初始区间为[0.64,0.72],又0.68=(0.64+0.72),且f(0.68)<0,所以零点在区间[0.68,0.72],且该区间的左、右端点精确到0.1所取的近似值都是0.7.因此,0.7就是所求函数的一个正实数零点的近似值.]
3.用二分法求函数f(x)=3x-x-4的一个零点,其参考数据如下:
【导学号:37102369】
f(1.600 0)≈0.200
f(1.587 5)≈0.133
f(1.575 0)≈0.067
f(1.562 5)≈0.003
f(1.556 2)≈-0.029
f(1.550 0)≈-0.060
据此数据,可得方程3x-x-4=0的一个近似解(精确度为0.01)可取________.
1.562 5 [f(1.562 5)=0.003>0,f(1.556 2)=-0.029<0,方程3x-x
- 4 -
-4=0的一个近似解在(1.556 2,1.562 5)上,且满足精确度为0.01,所以所求近似解可取为1.562 5.]
4.某同学在借助计算器求“方程lg x=2-x的近似解(精确度为0.1)”时,设f(x)=lg x+x-2,算得f(1)<0,f(2)>0;在以下过程中,他用“二分法”又取了4个x的值,计算了其函数值的正负,并得出判断:方程的近似解是x≈1.8.那么他再取的x的4个值依次是________.
1.5,1.75,1.875,1.812 5 [第一次用二分法计算得区间(1.5,2),第二次得区间(1.75,2),第三次得区间(1.75,1.875),第四次得区间(1.75,1.812 5).]
5.已知函数f(x)=3ax2+2bx+c,a+b+c=0,f(0)>0,f(1)>0,证明a>0,并利用二分法证明方程f(x)=0在区间[0,1]内有两个实根.
【导学号:37102370】
[证明] ∵f(1)>0,∴3a+2b+c>0,
即3(a+b+c)-b-2c>0.
∵a+b+c=0,∴-b-2c>0,则-b-c>c,即a>c.
∵f(0)>0,∴c>0,则a>0.
在区间[0,1]内选取二等分点,
则f=a+b+c=a+(-a)=-a<0.
∵f(0)>0,f(1)>0,
∴函数f(x)在区间和上各有一个零点.
又f(x)最多有两个零点,从而f(x)=0在[0,1]内有两个实根.
- 4 -
相关文档
- 高中数学必修1示范教案(1_2 用二分2021-06-2312页
- 高中数学 1_1_1 变化率问题同步练2021-06-235页
- 高中数学北师大版新教材必修一课时2021-06-239页
- 2020高中数学 课时分层作业4 三角2021-06-235页
- 2019高中数学 学考复习18 三角函数2021-06-233页
- 数学卷·2018届江西省九江市重点高2021-06-2322页
- 2020高中数学第三章指数函数和对数2021-06-233页
- 专题11 导数的几何意义-备战2018高2021-06-2334页
- 高中数学选修2-2课件1_2_22021-06-2352页
- 广东省湛江市普通高中毕业班2018届2021-06-237页