• 1.30 MB
  • 2021-06-24 发布

高考数学一轮复习第二章函数及其应用2-2函数的单调性与最值练习理北师大版

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2.2 函数的单调性与最值 核心考点·精准研析 考点一 函数的单调性(区间) ‎ ‎1.下列函数中,在区间(-∞,0)上是减少的是 (  )‎ A.y=1-x2           B.y=x2+2x C.y=- D.y=‎ ‎2.函数f(x)=ln(x2-2x-8) 的单调递增区间是 (  )‎ A.(-∞,-2) B.(-∞,1)‎ C.(1,+∞) D.(4,+∞)‎ ‎3.设函数f(x)在R上为增函数,则下列结论一定正确的是 (  )‎ A.y=在R上为减函数 B.y=|f(x)|在R上为增函数 C.y=-在R上为增函数 D.y=-f(x)在R上为减函数 ‎4.设函数f(x)=g(x)=x2f(x-1),则函数g(x)的递减区间是 (  )‎ A.(-∞,0]    B.[0,1)‎ C.[1,+∞)     D.[-1,0]‎ ‎【解析】1.选D.对于选项A,该函数是开口向下的抛物线,在区间(-∞,0]上是增加的;对于选项B,该函数是开口向上的抛物线,在区间(-∞,-1]上是减少的,在区间[-1,+∞)上是增加的;对于选项C,在区间(-∞,0]上是增加的;对于选项D,因为y==1+.易知其在(-∞,1)上为减少的.‎ ‎2.选D.函数有意义,则x2-2x-8>0,解得:x<-2或x>4,结合二次函数的单调性和复合函数同增异减的原则,可得函数的单调增区间为(4,+∞).‎ - 9 -‎ ‎3.选D.特例法:设f(x)=x,则y==的定义域为(-∞,0)∪(0,+∞),在定义域上无单调性,A错;则 y=|f(x)|=|x|在R上无单调性,B错;则y=-=-的定义域为(-∞,0)∪(0,+∞),在定义域上无单调性,C错.y=-f(x)=-x在R上为减函数,所以选项D正确.‎ ‎4.选B.因为g(x)=‎ 作出函数图像如图所示,‎ 所以其递减区间为[0,1).‎ ‎ 判断函数单调性的方法 ‎(1)定义法:取值→作差→变形→定号→结论.‎ ‎(2)图像法:从左往右看,图像逐渐上升,单调递增;图像逐渐下降,单调递减.‎ ‎(3)利用函数和、差、积、商和复合函数单调性的判断法则.‎ ‎(4)导数法:利用导函数的正负判断函数单调性.‎ 其中(2)(3)一般用于选择题和填空题.‎ 考点二 函数的最值(值域) ‎ ‎【典例】1.函数y=的值域是________. ‎ ‎2.函数y=x+的最小值为________. ‎ ‎3.已知函数f(x)=-(a>0,x>0),若f(x)在上的值域为,则a=________.【解题导思】‎ 序号 联想解题 - 9 -‎ ‎1‎ 由,想到分离常数 ‎2‎ 由x+,想到利用函数的单调性或换元法求解 ‎3‎ 由-,想到反比例函数的单调性 ‎【解析】1.(分离常数法)因为y==-1+,又因为1+x2≥1,所以0<≤2,所以-1<-1+≤1,所以函数的值域为(-1,1].‎ 答案:(-1,1]‎ ‎2.方法一:因为函数y=x和y=在定义域内均为增函数,故函数y=x+在其定义域[1,+∞)内为增函数,所以当x=1时,y取最小值,即ymin=1.‎ 方法二:令t=,且t≥0,则x=t2+1,‎ 所以原函数变为y=t2+1+t,t≥0.‎ 配方得y=+,‎ 又因为t≥0,所以y≥+=1.‎ 故函数y=x+的最小值为1.‎ 答案:1‎ ‎3.由反比例函数的性质知函数f(x)=-(a>0,x>0)在上是增加的,‎ - 9 -‎ 所以即解得a=.‎ ‎ 答案:‎ ‎ 求函数最值的常用方法 ‎(1)单调性法:先确定函数的单调性,再利用单调性求最值.‎ ‎(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.‎ ‎(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.‎ ‎(4)分离常数法:对于分式的分子、分母中都含有变量的求值域,变成只有分子或分母有变量的情况,再利用函数的观点求最值.‎ ‎(5)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.‎ ‎1.若函数f(x)=则函数f(x)的值域是(  )‎ A.(-∞,2) B.(-∞,2]‎ C.[0,+∞) D.(-∞,0)∪(0,2)‎ ‎【解析】选A.当x<1时,0<2x<2,‎ 当x≥1时,f(x)=-log2x≤-log21=0,‎ 综上f(x)<2,即函数的值域为(-∞,2).‎ ‎2.函数y=的值域为________. ‎ ‎【解析】y===3+,‎ 因为≠0,所以3+≠3,‎ 所以函数y=的值域为{y|y≠3}.‎ 答案:{y|y≠3}‎ - 9 -‎ ‎3.(2020·汉中模拟)设0x1>1时,[f(x2)-f(x1)](x2-x1)<0恒成立,设a=f,b=f(2),c=f(e),则a,b,c的大小关系为 (  )‎ - 9 -‎ A.c>a>b B.c>b>a C.a>c>b D.b>a>c ‎【解析】选D.因为f(x)的图像关于x=1对称,所以f=f,又由已知可得f(x)在(1,+∞)上单调递减,所以f(2)>f>f(e),即f(2)>f>f(e).‎ 与抽象函数有关的不等式问题 ‎【典例】函数f(x)的定义域为(0,+∞),且对一切x>0,y>0都有f=f(x)-f(y),当x>1时,有f(x)>0. ‎ ‎(1)求f(1)的值;‎ ‎(2)判断f(x)的单调性并证明;‎ ‎(3)若f(6)=1,解不等式f(x+5)-f<2.‎ ‎【解析】(1)f(1)=f=f(x)-f(x)=0.‎ ‎(2)f(x)在(0,+∞)上是增函数.‎ 证明:设01,所以f>0.所以f(x2)-f(x1)>0,即f(x)在(0,+∞)上是增函数.‎ ‎(3)因为f(6)=f=f(36)-f(6),又f(6)=1,所以f(36)=2,原不等式化为f(x2+5x)