- 365.10 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第八章 立体几何
第1讲 空间几何体的结构、三视图和直观图
一、选择题
1. 下列四个几何体中,几何体只有主视图和左视图相同的是( )
A.①② B.①③
C.①④ D.②④
解析 由几何体分析知②④中主视图和左视图相同.
答案 D
2.以下关于几何体的三视图的论述中,正确的是 ( ).
A.球的三视图总是三个全等的圆
B.正方体的三视图总是三个全等的正方形
C.水平放置的正四面体的三视图都是正三角形
D.水平放置的圆台的俯视图是一个圆
解析 画几何体的三视图要考虑视角,但对于球无论选择怎样的视角,其三视图总是三个全等的圆.
答案 A
3.将正方体(如图(a)所示)截去两个三棱锥,得到图(b)所示的几何体,则该几何体的侧视图为 ( ).
解析 还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线,D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.
答案 B
4.若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).
解析 A,B的正视图不符合要求,C的俯视图显然不符合要求,答案选D.
答案 D
5.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于( ).
A.a2 B.2a2 C.a2 D.a2
解析 根据斜二测画法画平面图形的直观图的规则,可以得出一个平面图形的面积S与它的直观图的面积S′之间的关系是S′=S,本题中直观图的面积为a2,所以原平面四边形的面积等于=2a2.故选B.
答案 B
6.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是 ( ).
解析 选项C不符合三视图中“宽相等”的要求.
答案 C
二、填空题
7.如图所示,E、F分别为正方体ABCD-A1B1C1D1的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面DCC1D1上的投影是________(填序号).
解析 B在面DCC1D1上的投影为C,F、E在面DCC1D1上的投影应分别在边CC1和DD1上,而不在四边形的内部,故①③④错误.
答案 ②
8.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为________.
解析 (构造法)由主视图和俯视图可知几何体是
正方体切割后的一部分(四棱锥C1- ABCD),还原
在正方体中,如图所示.多面体最长的一条棱即
为正方体的体对角线,如图即AC1.由正方体棱长
AB=2知最长棱AC1的长为2.
答案 2
9.利用斜二测画法得到的:
①三角形的直观图一定是三角形;
②正方形的直观图一定是菱形;
③等腰梯形的直观图可以是平行四边形;
④菱形的直观图一定是菱形.
以上正确结论的序号是________.
解析 由斜二测画法的规则可知①正确;②错误,是一般的平行四边形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,④也错误.
答案 ①
10.图(a)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图(b)中的三视图表示的实物为________.
图(a) 图(b)
解析 (1)由三视图可知从正面看到三块,从侧面看到三块,结合俯视图可判断几何体共由4块长方体组成.
(2)由三视图可知几何体为圆锥.
答案 4 圆锥
三、解答题
11.如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的主视图和左视图在下面画出(单位:cm).
(1)在主视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
解 (1)如图.
(2)所求多面体的体积
V=V长方体-V正三棱锥=4×4×6-××2
=(cm3).
12.已知圆锥的底面半径为r,高为h,且正方体ABCD-A1B1C1D1内接于圆锥,求这个正方体的棱长.
解 如图所示,过内接正方体的一组对棱作圆锥的轴截面,设圆锥内接正方体的棱长为x,则在轴截面中,正方体的对角面A1ACC1的一组邻边的长分别为x和x.∵△VA1C1∽△VMN,
∴=,∴x=.
即圆锥内接正方体的棱长为.
13.正四棱锥的高为,侧棱长为,求侧面上斜高(棱锥侧面三角形的高)为多少?
解 如图所示,在正四棱锥S-ABCD中,
高OS=,侧棱SA=SB=SC=SD=,
在Rt△SOA中,
OA==2,∴AC=4.
∴AB=BC=CD=DA=2.
作OE⊥AB于E,则E为AB中点.
连接SE,则SE即为斜高,
在Rt△SOE中,∵OE=BC=,SO=,
∴SE=,即侧面上的斜高为.
14. (1)如图1所示的三棱锥的三条侧棱OA、OB、OC两两垂直,那么该三棱锥的侧视图是图2还是图3?
(2)某几何体的三视图如图4,问该几何体的面中有几个直角三角形?
(3)某几何体的三视图如图5,问该几何体的面中有几个直角三角形?
解 (1)该三棱锥在侧(右)投影面上的投影是一直角三角形,该三棱锥的侧视图应是图2.
(2)该几何体是三棱锥,其直观图如图所示,其中OA、OB、OC两两垂直,
∴△OAB、△OAC、△OBC都是直角三角形,但△ABC是锐角三角形.设AO=a,OC=c,OB=b,则AC=,BC=,AB=,∴cos∠BAC=>0,∴∠BAC为锐角.同理,∠ABC、∠ACB也是锐角.
综上所述,该几何体的面中共有三个直角三角形.
(3)该几何体是三棱锥,其直观图如图所示,其中,AB⊥BC,AB⊥BD,BD⊥CD,∴DC⊥面ABD,∴DC⊥AD,
∴△ACD也是直角三角形.
∴该几何体的面中共有四个直角三角形.
相关文档
- 高考数学专题复习练习:考点规范练482021-06-249页
- 高考数学专题复习练习:考点规范练152021-06-2410页
- 高考数学专题复习练习第7讲 解三角2021-06-248页
- 高考数学专题复习练习:考点规范练22021-06-246页
- 高考数学专题复习练习:7-4 专项基2021-06-247页
- 高考数学专题复习练习第十一章 计2021-06-2413页
- 高考数学专题复习练习:4-9 专项基2021-06-244页
- 高考数学专题复习练习:7_3 二元一2021-06-2419页
- 高考数学专题复习练习第八章 第五2021-06-245页
- 高考数学专题复习练习:8_6 空间向2021-06-2419页