- 263.66 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.1.3 集合的基本运算
第1课时 并集与交集
[学习目标] 1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.3.能够利用交集、并集的性质解决有关问题.
[知识链接]
下列说法中,不正确的有________:
①集合A={1,2,3},集合B={3,4,5},由集合A和集合B的所有元素组成的新集合为{1,2,3,3,4,5};
②集合A={5,6,8},集合B={5,7,8},由集合A和集合B的所有元素组成的新集合为{5,6,7,8};
③集合A={1,2,3},集合B={3,4,5},由集合A和集合B的公共元素组成的集合为{3}.
答案 ①
[预习导引]
1.并集和交集的概念及其表示
类别
概念
自然语言
符号语言
图形语言
并集
由所有属于集合A或者属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”)
A∪B={x|x∈A,或x∈B}
交集
由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作“A交B”)
A∩B={x|x∈A,且x∈B}
2.并集与交集的运算性质
并集的运算性质
交集的运算性质
A∪B=B∪A
A∩B=B∩A
A∪A=A
A∩A=A
A∪∅=A
A∩∅=∅
A⊆B⇔A∪B=B
A⊆B⇔A∩B=A
解决学生疑难点
要点一 集合并集的简单运算
例1 (1)设集合M={4,5,6,8},集合N={3,5,7,8},那么M∪N等于( )
A.{3,4,5,6,7,8} B.{5,8}
C.{3,5,7,8} D.{4,5,6,8}
(2)已知集合P={x|x<3},Q={x|-1≤x≤4},那么P∪Q等于( )
A.{x|-1≤x<3} B.{x|-1≤x≤4}
C.{x|x≤4} D.{x|x≥-1}
答案 (1)A (2)C
解析 (1)由定义知M∪N={3,4,5,6,7,8}.
(2)在数轴上表示两个集合,如图.
规律方法 解决此类问题首先应看清集合中元素的范围,简化集合,若是用列举法表示的数集,可以根据并集的定义直接观察或用Venn图表示出集合运算的结果;若是用描述法表示的数集,可借助数轴分析写出结果,此时要注意当端点不在集合中时,应用“空心点”表示.
跟踪演练1 (1)已知集合A={x|(x-1)(x+2)=0};B={x|(x+2)(x-3)=0},则集合A∪B是( )
A.{-1,2,3} B.{-1,-2,3}
C.{1,-2,3} D.{1,-2,-3}
(2)若集合M={x|-3<x≤5},N={x|x<-5,或x>5},则M∪N=________.
答案 (1)C (2){x|x<-5,或x>-3}
解析 (1)∵A={1,-2},B={-2,3},
∴A∪B={1,-2,3}.
(2)将-3<x≤5,x<-5或x>5在数轴上表示出来.
则M∪N={x|x<-5,或x>-3}.
要点二 集合交集的简单运算
例2 (1)已知集合A={0,2,4,6},B={2,4,8,16},则A∩B等于( )
A.{2} B.{4}
C.{0,2,4,6,8,16} D.{2,4}
(2)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于( )
A.{x|0≤x≤2} B.{x|1≤x≤2}
C.{x|0≤x≤4} D.{x|1≤x≤4}
答案 (1)D (2)A
解析 (1)观察集合A,B,可得集合A,B的全部公共元素是2,4,所以A∩B={2,4}.
(2)在数轴上表示出集合A与B,如下图.
则由交集的定义可得A∩B={x|0≤x≤2}.
规律方法 求交集就是求两集合的所有公共元素组成的集合,和求并集的解决方法类似.
跟踪演练2 已知集合A={x|-1<x≤3},B={x|x≤0,或x≥},求A∩B,A∪B.
解 ∵A={x|-1<x≤3},B={x|x≤0,或x≥},
把集合A与B表示在数轴上,如图.
∴A∩B={x|-1<x≤3}∩{x|x≤0,或x≥}
={x|-1<x≤0,或≤x≤3};
A∪B={x|-1<x≤3}∪{x|x≤0或x≥}=R.
要点三 已知集合交集、并集求参数
例3 已知A={x|2a≤x≤a+3},B={x|x<-1,或x>5},若A∩B=∅,求实数a的取值范围.
解 由A∩B=∅,
(1)若A=∅,有2a>a+3,∴a>3.
(2)若A≠∅,如下图:
∴解得-≤a≤2.
综上所述,a的取值范围是{a|-≤a≤2,或a>3}.
规律方法 1.与不等式有关的集合的运算,利用数轴分析法直观清晰,易于理解.若出现参数应注意分类讨论,最后要归纳总结.
2.建立不等式时,要特别注意端点值是否能取到,分类的标准取决于已知集合,最好是把端点值代入题目验证.
跟踪演练3 设集合A={x|-1<x<a},B={x|1<x<3}且A∪B={x|-1<x<3},求a的取值范围.
解 如下图所示,
由A∪B={x|-1<x<3}知,1<a≤3.
1.若集合A={0,1,2,3},B={1,2,4},则集合A∪B 等于( )
A.{0,1,2,3,4} B.{1,2,3,4}
C.{1,2} D.{0}
答案 A
解析 集合A有4个元素,集合B有3个元素,它们都含有元素1和2,因此,A∪B共含有5个元素.故选A.
2.设A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为( )
A.{2} B.{3} C.{-3,2} D.{-2,3}
答案 A
解析 注意到集合A中的元素为自然数,因此易知A={1,2,3,4,5,6,7,8,9,10},而直接解集合B中的方程可知B={-3,2},因此阴影部分显然表示的是A∩B={2}.
3.集合P={x∈Z|0≤x<3},M={x∈R|x2≤9},则P∩M等于( )
A.{1,2} B.{0,1,2}
C.{x|0≤x<3} D.{x|0≤x≤3}
答案 B
解析 由已知得P={0,1,2},M={x|-3≤x≤3},故P∩M={0,1,2}.
4.已知集合A={x|x>2,或x<0},B={x|-<x<},则( )
A.A∩B=∅ B.A∪B=R
C.B⊆A D.A⊆B
答案 B
解析 ∵A={x|x>2,或x<0},B={x|-<x<},
∴A∩B={x|-<x<0,或2<x<},A∪B=R.故选B.
5.设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则实数k的取值范围为________.
答案 k≤6
解析 因为N={x|2x+k≤0}={x|x≤-},
且M∩N≠∅,所以-≥-3⇒k≤6.
1.对并集、交集概念的理解
(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B但x∉A;x∈A且x∈B.因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.
(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分,特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.
2.集合的交、并运算中的注意事项
(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.
(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值能否取到.
一、基础达标
1.已知集合A={x|x≥0},B={x|-1≤x≤2},则A∪B等于( )
A.{x|x≥-1} B.{x|x≤2}
C.{x|0<x≤2} D.{x|1≤x≤2}
答案 A
解析 结合数轴得A∪B={x|x≥-1}.
2.已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N等于( )
A.{0,1,2} B.{-1,0,1,2}
C.{-1,0,2,3} D.{0,1,2,3}
答案 A
解析 集合M={x|-1<x<3,x∈R},N={-1,0,1,2,3},则M∩N={0,1,2},故选A.
3.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N等于( )
A.{0} B.{0,2}
C.{-2.0} D.{-2,0,2}
答案 D
解析 集合M={0,-2},N={0,2},故M∪N={-2,0,2},选D.
4.设集合M={x|-3<x<2},N={x|1≤x≤3},则M∩N等于( )
A.{x|1≤x<2} B.{x|1≤x≤2}
C.{x|2<x≤3} D.{x|2≤x≤3}
答案 A
解析 ∵M={x|-3<x<2}且N={x|1≤x≤3},
∴M∩N={x|1≤x<2}.
5.设A={x|-3≤x≤3},B={y|y=-x2+t}.若A∩B=∅,则实数t的取值范围是( )
A.t<-3 B.t≤-3
C.t>3 D.t≥3
答案 A
解析 B={y|y≤t},结合数轴可知t<-3.
6.若集合A={x|x≤2},B={x|x≥a},满足A∩B={2},则实数a=________.
答案 2
解析 ∵A∩B={x|a≤x≤2}={2},
∴a=2.
7.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.
(1)求A∩B;
(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.
解 (1)∵B={x|x≥2},∴A∩B={x|2≤x<3}.
(2)∵C={x|x>-},B∪C=C⇔B⊆C,
∴-<2,∴a>-4.
二、能力提升
8.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( )
A.0 B.1 C.2 D.4
答案 D
解析 ∵A∪B={0,1,2,a,a2},
又A∪B={0,1,2,4,16},
∴{a,a2}={4,16},∴a=4.
9已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},且B≠∅,若A∪B=A,则( )
A.-3≤m≤4 B.-3<m<4
C.2<m<4 D.2<m≤4
答案 D
解析 ∵A∪B=A,∴B⊆A.又B≠∅,
∴即2<m≤4.
10.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=________,b=________.
答案 -1 2
解析 ∵B∪C={x|-3<x≤4},∴A(B∪C).
∴A∩(B∪C)=A,
由题意{x|a≤x≤b}={x|-1≤x≤2}.
∴a=-1,b=2.
11.已知A={x|-2≤x≤4},B={x|x>a}.
(1)若A∩B≠A,求实数a的取值范围;
(2)若A∩B≠∅,且A∩B≠A,求实数a的取值范围.
解 (1)如图可得,在数轴上实数a在-2的右边,可得a≥-2;
(2)由于A∩B≠∅,且A∩B≠A,所以在数轴上,实数a在-2的右边且在4的左边,可得-2≤a<4.
三、探究与创新
12.已知集合A={x|-2≤x≤5},B={x|2a≤x≤a+3},若A∪B=A,求实数a的取值范围.
解 ∵A∪B=A,∴B⊆A.
若B=∅时,2a>a+3,即a>3;
若B≠∅时,
解得-1≤a≤2,
综上所述,a的取值范围是{a|-1≤a≤2,或a>3}.
13.已知集合A={x|2a+1≤x≤3a-5},B={x|x<-1,或x>16},分别根据下列条件求实数a的取值范围.
(1)A∩B=∅;(2)A⊆(A∩B).
解 (1)若A=∅,则A∩B=∅成立.
此时2a+1>3a-5,
即a<6.
若A≠∅,如图所示,则
解得6≤a≤7.
综上,满足条件A∩B=∅的实数a的取值范围是{a|a≤7}.
(2)因为A⊆(A∩B),且(A∩B)⊆A,
所以A∩B=A,即A⊆B.
显然A=∅满足条件,此时a<6.
若A≠∅,如图所示,则
或
由解得a∈∅;
由解得a>.
综上,满足条件A⊆(A∩B)的实数a的取值范围是{a|a<6,或a>}.
相关文档
- 高中数学必修1教案:第五章(第21-23课2021-06-245页
- 高中数学必修1教案:第九章直线平面2021-06-246页
- 高中数学必修1教案:第三章(第12课时)2021-06-244页
- 高中数学必修1教案第一章 章末检测2021-06-246页
- 高中数学必修1教案:第四章(第35课时)2021-06-246页
- 高中数学必修1教案:第九章直线平面2021-06-247页
- 高中数学必修1教案:第一章(第17课时2021-06-246页
- 高中数学必修1教案:第九章直线平面2021-06-245页
- 高中数学必修1教案:第四章(第19课时)2021-06-245页
- 高中数学必修1教案2_1_2-1指数函数2021-06-246页