- 294.00 KB
- 2021-06-25 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
§1.3.1函数的单调性与最大(小)值(1)
第一课时 单调性
【教学目标】
1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;
2. 学会运用函数图象理解和研究函数的性质;
3. 能够熟练应用定义判断与证明函数在某区间上的单调性.
【教学重点难点】
重点:函数的单调性及其几何意义.
难点:利用函数的单调性定义判断、证明函数的单调性
【教学过程】
(一)创设情景,揭示课题
1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:
y
x
1
-1
1
-1
随x的增大,y的值有什么变化?
能否看出函数的最大、最小值?
函数图象是否具有某种对称性?
2. 画出下列函数的图象,观察其变化规律:
(1)f(x) = x
y
x
1
-1
1
-1
从左至右图象上升还是下降 ______?
在区间 ____________ 上,随着x的增
大,f(x)的值随着 ________ .
(2)f(x) = -x+2
y
x
1
-1
1
-1
从左至右图象上升还是下降 ______?
在区间 ____________ 上,随着x的增
大,f(x)的值随着 ________ .
(3)f(x) = x2
在区间 ____________ 上,
f(x)的值随着x的增大而 ________ .
在区间 ____________ 上,f(x)的值随
着x的增大而 ________ .
3、从上面的观察分析,能得出什么结论?
学生回答后教师归纳:从上面的观察分析可以看出:不同的函数,其图象的变
化趋势不同,同一函数在不同区间上变化趋势也不同,函数图象的这种变化规律就是函数性质的反映,这就是我们今天所要研究的函数的一个重要性质——函数的单调性(引出课题)。
(二)研探新知
1、y = x2的图象在y轴右侧是上升的,如何用数学符号语言来描述这种“上升”呢?
学生通过观察、思考、讨论,归纳得出:
函数y = x2在(0,+∞)上图象是上升的,用函数解析式来描述就是:对于(0,+∞)上的任意的x1,x2,当x1<x2时,都有x12<x22 . 即函数值随着自变量的增大而增大,具有这种性质的函数叫增函数。
2.增函数
一般地,设函数y=f(x)的定义域为I,
如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x10 B. b<0 C.m>0 D.m<0
例3.16.求证:函数,在区间上是减函数
解:设则
在区间上是减函数。
点评:利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:
① 任取x1,x2∈D,且x10 B. b<0 C.m>0 D.m<0
例3.证明函数在(1,+∞)上为增函数
解:
变式训练3.:画出反比例函数的图象.
这个函数的定义域是什么?
它在定义域I上的单调性怎样?证明你的结论.
三、当堂检测
1、函数的单调增区间为 ( )
A. B. C. D.
2、函数,当时是增函数,当时是减函数,则等于 ( )
A.-3 B.13 C.7 D.由m而定的常数
3、若函数在上是减函数,则的取值范围是 ( )
A. B. C. D.
4、函数的减区间是____________________.
5、若函数在上是减函数,则的取值范围是______.
课后练习与提高
一、 选择题
1、下列函数中,在区间(0,2)上为增函数的是 ( )
A. B. C. D.
2、函数的单调减区间是 ( )
A. B. C. D.
二、填空题:
3、函数,上的单调性是_____________________.
4、已知函数在上递增,那么的取值范围是________.
三、解答题:
5、设函数为R上的增函数,令
(1)、求证:在R上为增函数
(2)、若,求证
参考答案
例一 略 变式训练一B
例二 略 变式训练二C
例三
解:设则
变式训练三略
相关文档
- 高考理科数学复习课件:2-3函数的单2021-06-24102页
- 2020高中数学 第一章正弦、余弦函2021-06-247页
- 高中数学必修1教案:第三章(第9课时)等2021-06-247页
- 2021版高考数学一轮复习核心素养测2021-06-247页
- 高中数学必修1教案:第三章(第13课时)2021-06-246页
- 2019-2020学年高中数学第一章导数2021-06-2423页
- 【推荐】专题03 利用导数研究函数2021-06-2414页
- 【数学】2020届一轮复习(理)课标通用2021-06-245页
- 高中数学必修1教案:第五章(第11课时)2021-06-246页
- 高中数学 1-3-1 函数的单调性与导2021-06-245页