- 472.50 KB
- 2021-06-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2011年数学人教版江苏卷
一、填空题
1、(江苏14)14.设集合,
, 若则实数m的取值范围是______________
2、(江苏2)函数的单调增区间是__________
3、(江苏8)在平面直角坐标系中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ长的最小值是________.
4、(江苏11)已知实数,函数,若,则a的值为________
5、(江苏12)在平面直角坐标系中,已知点P是函数的图象上的动点,该图象在P处的切线交y轴于点M,过点P作的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_____________
6、(江苏1)已知集合则
二、解答题
7、(江苏17)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.
(1)若广告商要求包装盒侧面积S(cm)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
8、(江苏19)已知a,b是实数,函数 和是的导函数,若在区间I上恒成立,则称和在区间I上单调性一致.
(1)设,若函数和在区间上单调性一致,求实数b的取值范围;
(2)设且,若函数和在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.
三、填空题
9、江苏14.设集合,
, 若 则实数m的取值范围是
________.
四、解答题
10、N
M
P
A
x
y
B
C
(本小题满分16分)如图,在平面直角坐标系中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,
过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设
直线PA的斜率为k.
(1)当直线PA平分线段MN时,求k的值;
(2)当k=2时,求点P到直线AB的距离d;
(3)对任意k>0,求证:PA⊥PB.
11、(本小题满分10分)
在平面直角坐标系中,求过椭圆(为参数)的右焦点,且与直线(为参数)平行的直线的普通方程.
12、(江苏16)如图,在四棱锥中,平面PAD⊥平面
ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点
求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD
13、(江苏18)如图,在平面直角坐标系中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k
(1)当直线PA平分线段MN,求k的值;
(2)当k=2时,求点P到直线AB的距离d;
(3)对任意k>0,求证:PA⊥PB
五、填空题
14、(江苏4)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值是
Read a,b
If a>b Then
ma
Else
mb
End If
Print m
15、根据如图所示的伪代码,当输入分别为2,3时,最后输出的的值是________
六、解答题
16、选修4-2:矩阵与变换(本小题满分10分)
已知矩阵,向量,求向量,使得
七、填空题
17、(江苏6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差
18、江苏5.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率为______
19、(江西理12)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书,则小波周末不在家看书的概率为
20、(上海理12)随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到)。
21、(江苏5)5.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率为______
22、江苏5.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率为______
23、(江苏7)已知 则的值为__________
八、解答题
24、(江苏15)在△ABC中,角A、B、C所对应的边为
(1)若 求A的值;
(2)若,求的值.
本题主要考查三角函数的基本关系式、两角和的正弦公式、解三角形,考查运算求解能力。
25、(江苏9)函数是常数,的部分图象如图所示,则f(0)=
九、填空题
26、(江苏10)已知是夹角为的两个单位向量,若,则k的值为 .
27、(江苏13)设,其中成公比为q的等比数列,成公差为1的等差数列,则q的最小值是________
十、解答题
28、(江苏20)设M部分为正整数组成的集合,数列,前n项和为,已知对任意整数kM,当整数都成立
(1)设的值;
(2)设的通项公式
本小题考查数列的通项与前项和的关系、等差数列的基本性质等基础知识,考查考生分析探究及逻辑推理的能力,满分16分。
十一、填空题
29、(江苏14)设集合,
, 若则实数m的取值范围是______________
30、函数的单调增区间是__________
31、在平面直角坐标系中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ长的最小值是________.
32、已知实数,函数,若,则a的值为________
33、在平面直角坐标系中,已知点P是函数的图象上的动点,该图象在P处的切线交y轴于点M,过点P作的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_____________
十二、解答题
34、已知a,b是实数,函数 和是的导函数,若在区间I上恒成立,则称和在区间I上单调性一致.
(1)设,若函数和在区间上单调性一致,求实数b的取值范围;
(2)设且,若函数和在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.
35、请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.
(1)若广告商要求包装盒侧面积S(cm)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
十三、填空题
36、(江苏3)设复数z满足(i是虚数单位),则的实部是_________
十四、解答题
37、请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=cm
(1)某广告商要求包装盒侧面积S(cm)最大,试问应取何值?
(2)某广告商要求包装盒容积V(cm)最大,试问应取何值?并求出此时包装盒的高与底面边长的比值。
P
本小题主要考查函数的概念、导数等基础知识,考查数学建模能力、空间想象力、数学阅读能力及解决实际问题的能力。满分14分.
以下是答案
一、填空题
1、
2、
【解析】在在大于零,且增.
本题主要考查函数的概念,基本性质,指数与对数,对数函数图象和性质,容易题
3、4.
【解析】设经过原点的直线与函数的交点为,,则.
本题主要考查幂函数,函数图象与性质,函数与方程,函数模型及其应用,两点间距离公式以及基本不等式,中档题.
4、
【解析】 .
,不符合;
.
本题主要考查函数概念,函数与方程,函数模型及其应用,含参的分类讨论,中档题.
5、
【解析】设则,过点P作的垂线
,
,所以,t在上单调增,在单调减,
.
本题主要考查指数运算,指数函数图象、导数的概念,导数公式,导数的运算与几何意义、利用导数研究函数,导数的应用、直线方程及其斜率、直线的位置关系,运算求解能力,综合应用有关知识的能力,本题属难题.
6、{—1,—2}
二、解答题
7、【解】(1)根据题意有
(0
相关文档
- 2014年全国统一高考数学试卷(理科)(新2021-06-3026页
- 2014年湖南省高考数学试卷(理科)2021-06-3026页
- 2015年北京市高考数学试卷(理科)2021-06-3023页
- 2013年北京市高考数学试卷(理科)2021-06-3022页
- 2005年天津市高考数学试卷(理科)【附2021-06-306页
- 2016年北京市高考数学试卷(文科)2021-06-3020页
- 2007年北京市高考数学试卷(文科)【附2021-06-306页
- 2013年天津市高考数学试卷(文科)2021-06-3022页
- 2009年福建省高考数学试卷(文科)【wo2021-06-3012页
- 2015年安徽省高考数学试卷(理科)2021-06-3022页