- 249.62 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
3.1.3 概率的基本性质
课时目标 1.了解事件间的相互关系.2.理解互斥事件、对立事件的概念.3.会用概率的加法
公式求某些事件的概率.
1.事件的关系与运算
(1)包含关系
一般地,对于事件 A 与事件 B,如果事件 A________,则事件 B________,这时称事件 B
包含事件 A(或称事件 A 包含于事件 B).记作________________.不可能事件记作∅,任
何事件都包含____________.一般地,如果 B⊇A,且 A⊇B,那么称事件 A 与事件
B________,记作________.
(2)并事件
若某事件发生当且仅当______________________,则称此事件为事件 A 与事件 B 的并事
件(或和事件),记作 A∪B(或 A+B).
(3)交事件
若某事件发生当且仅当______________________,则称此事件为事件 A 与事件 B 的交事
件(或积事件),记作 A∩B(或 AB).
(4)互斥事件与对立事件
①互斥事件的定义
若 A∩B 为________________(A∩B=__________),则称事件 A 与事件 B 互斥.
②对立事件的含义
若 A∩B 为________________,A∪B 是__________,则称事件 A 与事件 B 互为对立事件.
2.概率的几个基本性质
(1)概率的取值范围__________.
(2)________的概率为 1,__________的概率为 0.
(3)概率加法公式
如果事件 A 与 B 为互斥事件,则 P(A∪B)=____________.
特殊地,若 A 与 B 为对立事件,则 P(A)=1-P(B).
P(A∪B)=____,P(A∩B)=____.
一、选择题
1.给出事件 A 与 B 的关系示意图,如图所示,则( )
A.A⊆B B.A⊇B
C.A 与 B 互斥 D.A 与 B 互为对立事件
2.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设 A={两次都击中飞机},B
={两次都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},下列关
系不正确的是( )
A.A⊆D B.B∩D=∅
C.A∪C=D D.A∪B=B∪D
3.从 1,2,…,9 中任取两个数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个
是奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少
有一个偶数.
在上述几对事件中是对立事件的是( )
A.① B.②④
C.③ D.①③
4.下列四种说法:
①对立事件一定是互斥事件;
②若 A,B 为两个事件,则 P(A∪B)=P(A)+P(B);
③若事件 A,B,C 彼此互斥,则 P(A)+P(B)+P(C)=1;
④若事件 A,B 满足 P(A)+P(B)=1,则 A,B 是对立事件.
其中错误的个数是( )
A.0 B.1
C.2 D.3
5.从一批羽毛球产品中任取一个,其质量小于 4.8 g 的概率为 0.3,质量小于 4.85 g 的概
率为 0.32,那么质量在[4.8,4.85]g 范围内的概率是( )
A.0.62 B.0.38
C.0.02 D.0.68
6.现有语文、数学、英语、物理和化学共 5 本书,从中任取 1 本,取出的是理科书的概
率为( )
A.1
5 B.2
5
C.3
5 D.4
5
题 号 1 2 3 4 5 6
答 案
二、填空题
7.口袋内装有一些大小相同的红球、白球和黑球,从中摸出 1 个球,摸出红球的概率是
0.42,摸出白球的概率是 0.28,则摸出黑球的概率是________.
8.甲、乙两队进行足球比赛,若两队战平的概率是1
4
,乙队胜的概率是1
3
,则甲队胜的概
率是________.
9.同时抛掷两枚骰子,没有 5 点或 6 点的概率为4
9
,则至少有一个 5 点或 6 点的概率是
________.
三、解答题
10.某射手射击一次射中 10 环,9 环,8 环,7 环的概率分别是 0.24,0.28,0.19,0.16,计算
这名射手射击一次.
(1)射中 10 环或 9 环的概率;
(2)至少射中 7 环的概率.
11.某家庭电话在家中有人时,打进的电话响第一声时被接的概率为 0.1,响第二声时被
接的概率为 0.3,响第三声时被接的概率为 0.4,响第四声时被接的概率为 0.1,那么电话
在响前四声内被接的概率是多少?
能力提升
12.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为 0.3、0.2、0.1、0.4.
(1)求他乘火车或乘飞机去的概率;
(2)求他不乘轮船去的概率;
(3)如果他乘某种交通工具的概率为 0.5,请问他有可能乘哪种交通工具?
13.在某一时期内,一条河流某处的年最高水位在各个范围内的概率如下表:
年最高水位
(单位:m) [8,10) [10,12) [12,14) [14,16) [16,18)
概率 0.1 0.28 0.38 0.16 0.08
计算在同一时期内,河流这一处的年最高水位在下列范围内的概率:
(1)[10,16)(m);(2)[8,12)(m);(3)水位不低于 12 m.
1.互斥事件与对立事件的判定
(1)利用基本概念:①互斥事件不可能同时发生;②对立事件首先是互斥事件,且必须有一
个要发生.
(2)利用集合的观点来判断:设事件 A 与 B 所含的结果组成的集合分别是 A、B.①事件 A
与 B 互斥,即集合 A∩B=∅;②事件 A 与 B 对立,即集合 A∩B=∅,且 A∪B=I,也即
A=∁IB 或 B=∁IA;③对互斥事件 A 与 B 的和 A+B,可理解为集合 A∪B.
2.运用互斥事件的概率加法公式解题时,首先要分清事件之间是否互斥,同时要学会把
一个事件分拆为几个互斥事件,做到不重不漏,分别求出各个事件的概率然后用加法公式
求出结果.
3.求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二
是先求其对立事件的概率,然后再运用公式求解.如果采用方法一,一定要将事件分拆成
若干互斥的事件,不能重复和遗漏;如果采用方法二,一定要找准其对立事件,否则容易
出现错误.
答案:
3.1.3 概率的基本性质
知识梳理
1.(1)发生 一定发生 B⊇A 或 A⊆B 不可能事件 相等 A=B (2)事件 A 发生或事
件 B 发生
(3)事件 A 发生且事件 B 发生 (4)①不可能事件 ∅ ②不可能事件 必然事件
2.(1)0≤P(A)≤1
(2)必然事件 不可能事件 (3)P(A)+P(B) 1 0
作业设计
1.C
2.D [“恰有一弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有
一弹击中”包含两种情况:一种是恰有一弹击中,一种是两弹都击中,∴A∪B≠B∪D.]
3.C [从 1,2,…,9 中任取两个数,有以下三种情况:
(1)两个奇数;(2)两个偶数;(3)一个奇数和一个偶数.①中“恰有一个偶数”和“恰有一
个奇数”是同一个事件,因此不互斥也不对立;②中“至少有一个奇数”包括“两个都
是奇数”这个事件,可以同时发生,因此不互斥也不对立;④中“至少有一个奇数”和
“至少有一个偶数”,可以同时发生,因此不互斥也不对立;③中是对立事件,故应选
C.]
4.D [对立事件一定是互斥事件,故①对;
只有 A、B 为互斥事件时才有 P(A∪B)=P(A)+P(B),故②错;
因 A,B,C 并不是随机试验中的全部基本事件,
故 P(A)+P(B)+P(C)并不一定等于 1,故③错;
若 A、B 不互斥,尽管 P(A)+P(B)=1,
但 A,B 不是对立事件,故④错.]
5.C [设“质量小于 4.8 g”为事件 A,“质量小于 4.85 g”为事件 B,“质量在[4.8,4.85]g”为
事件 C,则 A∪C=B,且 A、C 为互斥事件,所以 P(B)=P(A∪C)=P(A)+P(C),则 P(C)
=P(B)-P(A)=0.32-0.3=0.02.]
6.C [记录取到语文、数学、英语、物理、化学书分别为事件 A、B、C、D、E,则 A、
B、C、D、E 互斥,取到理科书的概率为事件 B、D、E 概率的和.
∴P(B∪D∪E)=P(B)+P(D)+P(E)
=1
5
+1
5
+1
5
=3
5.]
7.0.30
解析 P=1-0.42-0.28=0.30.
8. 5
12
解析 设甲队胜为事件 A,
则 P(A)=1-1
4
-1
3
= 5
12.
9.5
9
解析 没有 5 点或 6 点的事件为 A,则 P(A)=4
9
,至少有一个 5 点或 6 点的事件为 B.
因 A∩B=∅,A∪B 为必然事件,所以 A 与 B 是对立事件,则 P(B)=1-P(A)=1-4
9
=5
9.
故至少有一个 5 点或 6 点的概率为5
9.
10.解 设“射中 10 环”,“射中 9 环”,“射中 8 环”,“射中 7 环”的事件分别为
A、B、C、D,则 A、B、C、D 是互斥事件,
(1)P(A∪B)=P(A)+P(B)
=0.24+0.28=0.52;
(2)P(A∪B∪C∪D)
=P(A)+P(B)+P(C)+P(D)
=0.24+0.28+0.19+0.16=0.87.
答 射中 10 环或 9 环的概率是 0.52,至少射中 7 环的概率为 0.87.
11.解 记“响第 1 声时被接”为事件 A,“响第 2 声时被接”为事件 B,“响第 3 声时
被接”为事件 C,“响第 4 声时被接”为事件 D.“响前 4 声内被接”为事件 E,则易知 A、
B、C、D 互斥,且 E=A∪B∪C∪D,所以由互斥事件的概率的加法公式得
P(E)=P(A∪B∪C∪D)
=P(A)+P(B)+P(C)+P(D)
=0.1+0.3+0.4+0.1=0.9.
12.解 (1)记“他乘火车去”为事件 A1,“他乘轮船去”为事件 A2,“他乘汽车去”为
事件 A3,“他乘飞机去”为事件 A4,这四个事件不可能同时发生,故它们彼此互斥.
故 P(A1∪A4)=P(A1)+P(A4)=0.3+0.4=0.7.
所以他乘火车或乘飞机去的概率为 0.7.
(2)设他不乘轮船去的概率为 P,
则 P=1-P(A2)=1-0.2=0.8,
所以他不乘轮船去的概率为 0.8.
(3)由于 P(A)+P(B)=0.3+0.2=0.5,
P(C)+P(D)=0.1+0.4=0.5,
故他可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去.
13.解 设水位在[a,b)范围的概率为 P([a,b)).
由于水位在各范围内对应的事件是互斥的,由概率加法公式得:
(1)P([10,16))=P([10,12))+P([12,14))+P([14,16))
=0.28+0.38+0.16=0.82.
(2)P([8,12))=P([8,10))+P([10,12))
=0.1+0.28=0.38.
(3)记“水位不低于 12 m”为事件 A,
P(A)=1-P([8,12))=1-0.38=0.62.
相关文档
- 【数学】四川省南充市白塔中学20192021-07-019页
- 2019-2020学年陕西省延安市黄陵中2021-07-0112页
- 2020浙江新高考数学二轮复习教师用2021-07-0119页
- 专题26 一元二次不等式及其解法-202021-07-0111页
- 2018-2019学年四川省成都外国语学2021-07-019页
- 宁夏石嘴山市2020届高三适应性测试2021-07-0120页
- 2018-2019学年黑龙江省鹤岗市第一2021-07-018页
- 高考数学专题复习练习第2讲 命题及2021-07-016页
- 福建省厦门市2013届高三3月质量检2021-07-0114页
- 福建省永泰县第一中学2019-2020学2021-07-0110页