- 211.00 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时分层作业(十九) 空间向量与垂直关系
(建议用时:40分钟)
[基础达标练]
一、选择题
1.已知平面α的法向量为a=(1,2,-2),平面β的法向量为b=(-2,-4,k),若α⊥β,则k=( )
A.4 B.-4 C.5 D.-5
D [∵α⊥β,∴a⊥b,∴a·b=-2-8-2k=0.
∴k=-5.]
2.已知=(1,5,-2),=(3,1,z),若⊥,=(x-1,y,-3),且BP⊥平面ABC,则实数x,y,z分别为( )
A.,-,4 B.,-,4
C.,-2,4 D.4,,-15
B [∵⊥,∴·=0,即3+5-2z=0,得z=4,
又BP⊥平面ABC,∴⊥,⊥,
则解得]
3.在菱形ABCD中,若是平面ABCD的法向量,则以下等式中可能不成立的是( )
【导学号:46342170】
A.⊥ B.⊥
C.⊥ D.⊥
D [由题意知PA⊥平面ABCD,所以PA与平面上的线AB,CD都垂直,A,B正确;又因为菱形的对角线互相垂直,可推得对角线BD⊥平面PAC,故PC⊥BD,C选项正确.]
4.已知点A(1,0,0),B(0,1,0),C(0,0,1),点D满足条件:DB⊥AC,DC⊥AB,AD=BC,则点D的坐标为( )
A.(1,1,1)
B.(-1,-1,-1)或
C.
7
D.(1,1,1)或
D [设D(x,y,z),则=(x,y-1,z),=(x,y,z-1),=(x-1,y,z),=(-1,0,1),
=(-1,1,0),
=(0,-1,1).
又DB⊥AC⇔-x+z=0 ①,
DC⊥AB⇔-x+y=0 ②,
AD=BC⇔(x-1)2+y2+z2=2 ③,
联立①②③得x=y=z=1或x=y=z=-,所以点D的坐标为(1,1,1)或.故选D.]
5.如图3214所示,在正方体ABCDA1B1C1D1中,E,F分别在A1D,AC上,且A1E=A1D,AF=AC,则( )
图3214
A.EF至多与A1D,AC之一垂直
B.EF⊥A1D,EF⊥AC
C.EF与BD1相交
D.EF与BD1异面
B [建立分别以DA,DC,DD1所在直线为x,y,z轴的空间直角坐标系(图略),不妨设正方体的棱长为1,则=(1,0,1),
=(0,1,0)-(1,0,0)=(-1,1,0),
E,F,
=,∴·=0,·=0,
7
∴EF⊥A1D,EF⊥AC.]
二、填空题
6.已知点P是平行四边形ABCD所在平面外一点,如果=(2,-1,-4),=(4,2,0),=(-1,2,-1).给出下列结论:①AP⊥AB;②AP⊥AD;③是平面ABCD的一个法向量.其中正确的是________(填序号).
①②③ [·=2×(-1)+(-1)×2+(-4)×(-1)=-2-2+4=0,则⊥,则AB⊥AP.·=4×(-1)+2×2+0=0,则⊥,则AP⊥AD.又AB∩AD=A,∴AP⊥平面ABCD,故是平面ABCD的一个法向量.]
7.已知a=(0,1,1),b=(1,1,0),c=(1,0,1)分别是平面α,β,γ的法向量,则α,β,γ三个平面中互相垂直的有________对.
【导学号:46342171】
0 [∵a·b=(0,1,1)·(1,1,0)=1≠0,a·c=(0,1,1)·(1,0,1)=1≠0,b·c=(1,1,0)·(1,0,1)=1≠0,∴a,b,c中任意两个都不垂直,即α,β,γ中任意两个都不垂直.]
8.已知空间三点A(-1,1,1),B(0,0,1),C(1,2,-3),若直线AB上存在一点M,满足CM⊥AB,则点M的坐标为________.
[设M(x,y,z),∵=(1,-1,0),=(x,y,z-1),=(x-1,y-2,z+3),由题意,得,∴x=-,y=,z=1,∴点M的坐标为.]
三、解答题
9.如图3215,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.求证:AM⊥平面BDF.
图3215
[证明] 以C为坐标原点,建立如图所示的空间直角坐标系,则A(,,0),B(0,,0),D(,0,0),F(,,1),M.
7
所以=,=(0, ,1),=(,-,0).
设n=(x,y,z)是平面BDF的法向量,
则n⊥,n⊥,
所以⇒
取y=1,得x=1,z=-.
则n=(1,1,-).
因为=.
所以n=- ,得n与共线.
所以AM⊥平面BDF.
10.如图3216所示,△ABC是一个正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD.
图3216
求证:平面DEA⊥平面ECA.
[证明] 建立如图所示的空间直角坐标系Cxyz,不妨设CA=2,
则CE=2,BD=1,C(0,0,0),A(,1,0),B(0,2,0),E(0,0,2),D(0,2,1).
7
所以=(,1,-2),=(0,0,2),=(0,2,-1).
分别设平面CEA与平面DEA的法向量是n1=(x1,y1,z1),n2=(x2,y2,z2),
则即
解得
即
解得
不妨取n1=(1,-,0),
n2=(,1,2),
因为n1·n2=0,所以n1⊥n2.
所以平面DEA⊥平面ECA.
[能力提升练]
1.两平面α,β的法向量分别为μ=(3,-1,z),v=(-2,-y,1),若α⊥β,则y+z的值是( )
A.-3 B.6 C.-6 D.-12
B [∵μ=(3,-1,z),v=(-2,-y,1)分别为α,β的法向量且α⊥β,
∴μ⊥v,
即μ·v=0,
-6+y+z=0
∴y+z=6.]
2.如图3217,在三棱柱ABCA1B1C1中,侧棱AA1⊥底面A1B1C1,∠BAC=90°,AB=AC=AA1=1,D是棱CC1的中点,P是AD的延长线与A1C1的延长线的交点.若点Q在线段B1P上,则下列结论正确的是( )
图3217
A.当点Q为线段B1P的中点时,DQ⊥平面A1BD
B.当点Q为线段B1P的三等分点时,DQ⊥平面A1BD
C.在线段B1P的延长线上,存在一点Q,使得DQ⊥平面A1BD
D.不存在DQ与平面A1BD垂直
D [以A1为原点,A1B1,A1C1,A1A所在直线分别为x轴,y轴,z轴建立空间直角坐标系(图略),则由已知得A1(0,0,0),B1(1,0,0),C1(0,1,0),B(1,0,1),D,P
7
(0,2,0),=(1,0,1),=,=(-1,2,0),=.设平面A1BD的法向量为n=(x,y,z),则取z=-2,则x=2,y=1,所以平面A1BD的一个法向量为n=(2,1,-2).假设DQ⊥平面A1BD,且=λ=λ(-1,2,0)=(-λ,2λ,0),则=+=,因为也是平面A1BD的法向量,所以n=(2,1,-2)与=共线,于是有===成立,但此方程关于λ无解.故不存在DQ与平面A1BD垂直,故选D.]
3.如图3218,四棱锥PABCD的底面ABCD是边长为1的正方形,PD⊥底面ABCD,且PD=1,若E,F分别为PB,AD中点,则直线EF与平面PBC的位置关系是________. 【导学号:46342173】
图3218
垂直 [以D为原点,DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系(图略),则E,F,∴=,平面PBC的一个法向量n=(0,1,1),∵=-n,
∴∥n,
∴EF⊥平面PBC.]
4.设A是空间任意一点,n是空间任意一个非零向量,则适合条件·n=0的点M的轨迹是________.
过点A且与向量n垂直的平面 [∵·n=0,∴⊥n或=0,∴点M在过点A且与向量n垂直的平面上.]
5.如图3219,在四棱锥PABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD.若PA=AB=BC=AD.
7
图3219
(1)求证:CD⊥平面PAC;
(2)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置并证明,若不存在,请说明理由.
[解] 因为∠PAD=90°,所以PA⊥AD.又因为侧面PAD⊥底面ABCD,且侧面PAD∩底面ABCD=AD,所以PA⊥底面ABCD.又因为∠BAD=90°,所以AB,AD,AP两两垂直.分别以AB,AD,AP所在直线为x轴,y轴,z轴建立如图所示的空间直角坐标系.
设AD=2,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1).
(1)证明:=(0,0,1),=(1,1,0),=(-1,1,0),
可得·=0,·=0,所以AP⊥CD,AC⊥CD.
又因为AP∩AC=A,所以CD⊥平面PAC.
(2)设侧棱PA的中点是E,则E,=.
设平面PCD的法向量是n=(x,y,z),则因为=(-1,1,0),=(0,2,-1),所以取x=1,则y=1,z=2,所以平面PCD的一个法向量为n=(1,1,2).
所以n·=(1,1,2)·=0,所以n⊥.
因为BE⊄平面PCD,所以BE∥平面PCD.
综上所述,当E为PA的中点时,BE∥平面PCD.
7
相关文档
- 高中数学:2_2《直接证明与间接证明2021-07-014页
- 2020高中数学 课时分层作业19 一元2021-07-015页
- 高中数学必修1公开课教案3_2_1 几2021-07-0110页
- 2019-2020学年高中数学课时跟踪检2021-07-015页
- 高中数学人教A版必修3第二章《统计2021-07-0116页
- 高中数学平面向量知识点总结2021-07-014页
- 2020年高中数学第三章空间向量的正2021-07-017页
- 高中数学:不等式知识点详解2021-07-014页
- 高中数学第二章平面解析几何2-6-12021-07-0143页
- 高中数学必修5:2_1_1数列的概念与简2021-07-013页