- 182.98 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.(2020·陕西四校联考)直线ax-by=0与圆x2+y2-ax+by=0的位置关系是( )
A.相交 B.相切
C.相离 D.不能确定
2.过圆x2+y2=4外一点P(4,2)作圆的两条切线,切点分别为A,B,则△ABP的外接圆方程是( )
A.(x-4)2+(y-2)2=1 B.x2+(y-2)2=4
C.(x+2)2+(y+1)2=5 D.(x-2)2+(y-1)2=5
3.(2020·福州质检)直线y-1=k(x-3)被圆(x-2)2+(y-2)2=4所截得的最短弦长等于( )
A. B.2 C.2 D.
4.(2019·黄山模拟)直线2x-y-=0与y轴的交点为P,点P把圆(x+1)2+y2=36的一条直径分为两段,则较长一段与较短一段的比值为( )
A.2 B.3 C.4 D.5
5.(2019·衡阳一中期末)若实数x,y满足x2+y2=3,则的取值范围是( )
A.(-,)
B.(-∞,-)∪(,+∞)
C.[-,]
D.(-∞,-]∪[,+∞)
6.已知两点A(-1,0),B(1,0)以及圆C:(x-3)2+(y-4)2=r2(r>0),若圆C上存在点P,满足·=0,则r的取值范围是( )
A.[3,6] B.[3,5] C.[4,5] D.[4,6]
7.(多选)已知直线ax+y-1=0与圆C:(x-1)2+(y+a)2=1相交于A,B两点,且△ABC为等腰直角三角形,则实数a的值为( )
A.1 B.-1 C. D.-
8.(多选)(2019·广东湛江模拟)已知圆C:(x-3)2+(y-3)2=72,若直线l:x+y-m=0垂直于圆C的一条直径,且经过这条直径的一个三等分点,则直线l的方程是( )
A.x+y-2=0 B.x+y-4=0
C.x+y-8=0 D.x+y-10=0
9.若直线l:mx+ny-m-n=0将圆C:2+2=4的周长分为2∶1两部分,则直线l的斜率为________.
10.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为________.
11.(2019·东北三校模拟)过点P(0,1)的直线l与圆(x-1)2+(y-1)2=1相交于A,B两点,若|AB|=,则该直线斜率为( )
A.±1 B.±
C.± D.±2
12.若直线kx+y+4=0上存在点P,过P作圆x2+y2-2y=0的切线,切点为Q,若|PQ|=2,则实数k的取值范围是( )
A.[-2,2]
B.[2,+∞)
C.(-∞,-2]∪[2,+∞)
D.(-∞,-1]∪[1,+∞)
13.如果圆C1:(x+m)2+(y+m)2=8上总存在到点(0,0)的距离为的点,则实数m的取值范围是( )
A.[-3,3] B.(-3,3)
C.(-3,-1]∪[1,3) D.[-3,-1]∪[1,3]
14.(2020·赣州十四校期末)已知点A(-5,0),B(-1,-3),若圆C:x2+y2=r2(r>0)上恰有两点M,N,使得△MAB和△NAB的面积均为5,则r的取值范围是( )
A.(1,) B.(1,5)
C.(2,5) D.(2,)
15.(2020·湖南师大附中月考)设直线l:(m-1)x+(2m+1)y+3m=0(m∈R)与圆(x-1)2+y2=8相交于A,B两点,C为圆心,且△ABC的面积等于4,则实数m=____________.
16.已知线段AB的长为2,动点C满足·=λ(λ>-1),且点C始终不在以点B为圆心,为半径的圆内,则负数λ的最大值是________.
答案精析
1.B 2.D 3.C 4.A 5.C 6.D 7.AB
8.AD 9.0或 10.2 11.A
12.C 13.D
14.B [由题意可得|AB|==5,根据△MAB和△NAB的面积均为5,可得两点M,N到直线AB的距离为2.由于直线AB的方程为3x+4y+15=0,若圆上只有一个点到直线AB的距离为2,则有圆心(0,0)到直线AB的距离=r+2,解得r=1;若圆上只有三个点到直线AB的距离为2,则有圆心(0,0)到直线AB的距离=r-2,解得r=5.所以实数r的取值范围是(1,5).故选B.]
15.或
解析 设CA,CB的夹角为θ,圆的半径为r,所以S△ABC=r2sin θ=4sin θ=4,得θ=.易知圆心C到直线l的距离为2,所以=2,解得m=-或-.
16.-
解析 建立平面直角坐标系(图略),
B(0,0),A(2,0),设C(x,y),
则·=x(x-2)+y2=λ,
则(x-1)2+y2=λ+1,
点C的轨迹是以(1,0)为圆心,为半径的圆且与x2+y2=外离或外切.
所以0<≤,
解得-1<λ≤-,
所以λ的最大值为-.
相关文档
- 2021高考数学新高考版一轮习题:专题2021-07-013页
- 2021高考数学新高考版一轮习题:专题2021-07-0114页
- 2021高考数学新高考版一轮习题:专题2021-07-014页
- 2021高考数学新高考版一轮习题:专题2021-06-306页
- 2021高考数学新高考版一轮习题:专题2021-06-305页
- 2021高考数学新高考版一轮习题:专题2021-06-306页
- 2021高考数学新高考版一轮习题:专题2021-06-307页
- 2021高考数学新高考版一轮习题:专题2021-06-304页
- 2021高考数学新高考版一轮习题:专题2021-06-305页
- 2021高考数学新高考版一轮习题:专题2021-06-305页