- 295.95 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.(2019·福州模拟)已知锐角三角形的边长分别为1,3,a,则a的取值范围是( )
A.(8,10) B.(2,)
C.(2,10) D.(,8)
2.某船从A处向北偏东60°方向航行2 千米后到达B处,然后朝南偏西30°的方向航行6千米到达C处,则A处与C处之间的距离为( )
A. 千米 B.2 千米
C.3千米 D.6千米
3.设△ABC的内角A,B,C所对的边分别为a,b,c,若asin A+bsin B=csin C,则△ABC的形状为( )
A.锐角三角形 B.直角三角形
C.钝角三角形 D.不确定
4.(2019·河北枣强中学期末)在钝角三角形ABC中,角A,B,C的对边分别是a,b,c,若C=30°,c=1,a=,则△ABC的面积为( )
A. B. C. D.
5.已知△ABC的三边a,b,c成等比数列,a,b,c所对的角依次为A,B,C,则sin B+cos B的取值范围是( )
A. B.
C. D.
6.在△ABC中,角A,B,C的对边分别是a,b,c,若bsin 2A+asin B=0,b=c,则的值为( )
A.1 B. C. D.
7.(多选)(2020·济南模拟)在△ABC中,a,b,c分别是角A,B,C的对边,以下四个结论中,正确的是( )
A.若a>b>c,则sin A>sin B>sin C
B.若A>B>C,则sin A>sin B>sin C
C.acos B+bcos A=c
D.若a2+b2>c2,则△ABC是锐角三角形
8.(多选)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为,a=2,b=3,则的值可以是( )
A. B. C. D.
9.在某海洋军事演习编队中,指挥舰00号与驱逐舰01号一直保持100海里的距离,与驱逐舰02号一直保持50海里的距离,当驱逐舰01号在指挥舰00号的北偏东15°,02号在00号南偏东45°时,驱逐舰01号与02号相距________海里.
10.在△ABC中,角A,B,C的对边分别为a,b,c,其外接圆的直径为d,且满足bcos A+acos B-4ccos C=0,则=________.
11.在△ABC中,已知角A,B,C的对边分别为a,b,c,若a=n+1,b=n,c=n-1,n∈N*,且A=2C,则△ABC的最小角的余弦值为( )
A. B. C. D.
12.如图所示,在△ABC,已知∠A∶∠B=1∶2,∠C的平分线CD把三角形面积分为3∶2两部分,则cos A等于( )
A. B. C. D.0
13.定义平面凸四边形为平面上没有内角度数大于180°的四边形,在平面凸四边形ABCD中,∠A=30°,∠B=135°,AB=,AD=2,设CD=t,则t的取值范围是( )
A.[1,+3] B.[1,+3)
C. D.
14.已知圆O:x2+y2=8,点A(2,0),动点M在圆上,则∠OMA的最大值为________.
15.(2020·安徽毛坦厂中学期末)已知△ABC中,A+B=3C,且=2,则△ABC面积的最大值为______.
16.设△ABC的内角A,B,C的对边为a,b,c.已知a,b,c成等比数列,且cos(A-C)-cos B=,延长边BC到D,若BD=4,则△ACD面积的最大值为________.
答案精析
1.B 2.B 3.B 4.A 5.C 6.C
7.ABC 8.AB 9.50 10. 11.D
12.C
13.D [如图所示,
BD2=AD2+AB2-2AD·ABcos A=4+3-6=1⇒BD=1,
可得∠DBA=90°⇒∠DBC=45°,
在△DBC中,利用正弦定理,设∠BCD=θ,
=⇒t=(15°<θ<135°),
当θ=90°时,t有最小值为;当θ=15°时,t有最大值为+1 (不能取等号),
所以t的取值范围是.]
14.
解析 如图,设|MA|=a,
因为|OM|=2,|OA|=2,
由余弦定理知cos∠OMA=
=
=·
≥·2=,
当且仅当a=2时等号成立,
∴∠OMA≤,
即∠OMA的最大值为.
15.1+
解析 由A+B=3C可得C=45°,由正弦定理,得=2,
故c=2·sin 45°=2,
当点C在AB的垂直平分线上时,AB边上的高最大,△ABC的面积最大,
此时a=b.
由余弦定理知,c2=a2+b2-2abcos C=(2-)a2=4,即a=,
故△ABC面积的最大值为absin C=×(4+2)×=1+.
16.
解析 ∵cos(A-C)-cos B=,
cos(A-C)+cos(A+C)
=2cos Acos C=,
∴cos Acos C=,①
∵a,b,c成等比数列,∴b2=ac,
由正弦定理可得,sin2B=sin Asin C,②
①-②可得,-sin2B=cos Acos C-sin Asin C
=cos(A+C)=-cos B,
∴cos2B+cos B-=0,∴cos B=(cos B=-舍去),∴B=,
∵cos(A-C)-cos B=,∴cos(A-C)=1,即A-C=0,
∴△ABC为正三角形,设边长为a,
∴S△ACD=AC·CDsin 120°=×a×(4-a)×=a(4-a)≤×2=,当且仅当a=4-a,即a=2时取等号.
∴△ACD面积的最大值为.
相关文档
- 2021高考数学新高考版一轮习题:专题2021-06-306页
- 2021高考数学新高考版一轮习题:专题2021-06-305页
- 2021高考数学新高考版一轮习题:专题2021-06-306页
- 2021高考数学新高考版一轮习题:专题2021-06-307页
- 2021高考数学新高考版一轮习题:专题2021-06-304页
- 2021高考数学新高考版一轮习题:专题2021-06-305页
- 2021高考数学新高考版一轮习题:专题2021-06-305页
- 2021高考数学新高考版一轮习题:专题2021-06-305页
- 2021高考数学新高考版一轮习题:专题2021-06-304页
- 2021高考数学新高考版一轮习题:专题2021-06-306页