- 216.50 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
§3.1.2 用二分法求方程的近似解教案
【教学目标】
1. 根据具体函数图象,能够借助计算器用二分法求相应方程的近似解;
2. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.
【教学重难点】
教学重点:通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.
教学难点:精确度概念的理解,求方程近似解一般步骤的概括和理解
【教学过程】
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标。
探究任务:二分法的思想及步骤
问题:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好,解法:
第一次,两端各放 个球,低的那一端一定有重球;
第二次,两端各放 个球,低的那一端一定有重球;
第三次,两端各放 个球,如果平衡,剩下的就是重球,否则,低的就是重球.
思考:以上的方法其实这就是一种二分法的思想,采用类似的方法,如何求的零点所在区间?如何找出这个零点?
新知:对于在区间上连续不断且<0的函数,通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection).
反思:
给定精度ε,用二分法求函数的零点近似值的步骤如何呢?
①确定区间,验证,给定精度ε;
②求区间的中点;
③计算: 若,则就是函数的零点; 若,则令(此时零点); 若,则令(此时零点);
④判断是否达到精度ε;即若,则得到零点零点值a(或b);否则重复步骤②~④.
(三)典型例题
例1 借助计算器或计算机,利用二分法求方程的近似解.
解析:如何进一步有效的缩小根所在的区间。
解:原方程即为,令,用计算器或计算机作出对应的表格与图象(见课本90页)
则,说明在区间内有零点,
取区间的中点,用计数器计算得,因为,所以.
再取区间的中点,用计数器计算得,因为,所以.
同理可得
由于
,
所以方程的近似解可取为
点评:利用同样的方法可以求方程的近似解。
变式训练1:求方程的根大致所在区间.
例2 求方程的解的个数及其大致所在区间.
分析:用二分法求方程的近似解的原理的应用,学生小组合作共同完成。
变式训练2
求函数的一个正数零点(精确到)
零点所在区间
中点函数值符号
区间长度
(四)小结:今天的学习内容和方法有哪些?你有哪些收获和经验?课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。
【板书设计】
一、二分法的思想及步骤
二、例题
例1
变式1
例2
变式2
【作业布置】课本91页1
§3.1.2 用二分法求方程的近似解学案
课前预习学案
一、预习目标
能说出零点的概念,零点的等价性,零点存在性定理。
二、预习内容
(预习教材P89~ P91,找出疑惑之处)
复习1:什么叫零点?零点的等价性?零点存在性定理?
对于函数,我们把使 的实数x叫做函数的零点.
方程有实数根函数的图象与x轴 函数 .
如果函数在区间上的图象是连续不断的一条曲线,并且有 ,那么,函数在区间内有零点.
复习2:一元二次方程求根公式? 三次方程? 四次方程?
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
一、学习目标
1. 根据具体函数图象,能够借助计算器用二分法求相应方程的近似解;
2. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.
学习重点:通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.
学习难点:精确度概念的理解,求方程近似解一般步骤的概括和理解
二、学习过程
探究任务:二分法的思想及步骤
问题:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好.
解法:
第一次,两端各放 个球,低的那一端一定有重球;
第二次,两端各放 个球,低的那一端一定有重球;
第三次,两端各放 个球,如果平衡,剩下的就是重球,否则,低的就是重球.
思考:以上的方法其实这就是一种二分法的思想,采用类似的方法,如何求的零点所在区间?如何找出这个零点?
新知:对于在区间上连续不断且<0的函数,通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection).
反思:
给定精度ε,用二分法求函数的零点近似值的步骤如何呢?
①确定区间,验证,给定精度ε;
②求区间的中点;
③计算: 若,则就是函数的零点; 若,则令(此时零点); 若,则令(此时零点);
④判断是否达到精度ε;即若,则得到零点零点值a(或b);否则重复步骤②~④.
三、 典型例题
例1 借助计算器或计算机,利用二分法求方程的近似解.
变式:求方程的根大致所在区间.
例2求方程的解的个数及其大致所在区间.
变式训练
求函数的一个正数零点(精确到)
零点所在区间
中点函数值符号
区间长度
四、反思总结
① 二分法的概念;②二分法步骤;③二分法思想.
五、当堂达标
1. 求方程的实数解个数及其大致所在区间.
课后练习与提高
1. 若函数在区间上为减函数,则在上( ).
A. 至少有一个零点 B. 只有一个零点
C. 没有零点 D. 至多有一个零点
2. 下列函数图象与轴均有交点,其中不能用二分法求函数零点近似值的是( ).
3. 函数的零点所在区间为( ).
A. B. C. D.
4. 用二分法求方程在区间[2,3]内的实根,由计算器可算得,,,那么下一个有根区间为 .
5. 函数的零点个数为 ,大致所在区间为 .
6. 借助于计算机或计算器,用二分法求函数的零点(精确到).
、
相关文档
- 2020届二轮复习用二分法求方程的近2021-07-016页
- 高中数学必修1教案:第二章(第15课时)2021-07-014页
- 高中数学必修1备课资料(1_2 用二分2021-07-011页
- 高中数学必修1教案:第三章(第7课时)等2021-07-015页
- 高中数学必修1教案:第九章直线平面2021-07-014页
- 人教A数学必修一用二分法求方程的2021-07-013页
- 高中数学必修1教案:第二章(第10课时)2021-07-014页
- 高中数学必修1教案:第五章(第2课时)向2021-07-014页
- 高中数学必修1教案:第五章(第5课时)实2021-07-017页
- 高中数学必修1教案第一章 1_2_2 第2021-07-019页